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Role of the Endothelium in Neonatal Diseases
Olachi J Mezu-Ndubuisi1, Akhil Maheshwari2

Ab s t r Ac t
In both fetal and neonatal physiologic and pathologic processes in most organs, endothelial cells are known to play critical roles. Although the 
endothelium is one of the most ubiquitous cell type in the body, the tight adherence to the blood vessel wall has made it difficult to study their 
diverse function and structure. In this article, we have reviewed endothelial cell origins and explored their heterogeneity in terms of structure, 
function, developmental changes, and their role in inflammatory and infectious diseases. We have also attempted to evaluate the untapped 
therapeutic potentials of endothelial cells in neonatal disease. This article comprises various peer-reviewed studies, including ours, and an 
extensive database literature search from EMBASE, PubMed, and Scopus.
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Im pAc t
• We reviewed the scope of endothelial cell heterogeneity, along 

with the endothelial cell structure and function as seen in the 
fetus and neonate.

• Endothelial cells are a diverse subtype of cells and play vital roles 
in innate immunity, angiogenesis, tissue homeostasis, repair of 
tissues, tissue inflammation, and cellular apoptosis in numerous 
inflammatory and infectious diseases.

• Evolutionary mechanisms regulating endothelial cell 
heterogeneity vary in vivo and ex vivo.

• Endothelial cells are important therapeutic mediators in the 
vasculature of numerous neonatal disorders.

In t r o d u c t I o n
Endothelial cells are metabolically active cells bordering the 
blood vessels inner lining, where they have a crucial function in 
both physiology and pathology. Due to their critical anatomic 
location, these cells have always been believed to have unlimited 
therapeutic potential, but the relative inaccessibility of the 
endothelium in intact organs has curtailed detailed in vivo studies. 
Recent advances in diagnostic microtechnology have provided 
some solutions to this problem, at least in larger blood vessels, 
and have renewed the scientific interest in these cells. These 
cells are important regulators of trans-vascular blood-to-tissue 
barrier to macromolecules and nutrients, trafficking of leukocytes 
between blood and inflamed tissues, and of tissue respiration via 
both hemodynamic homeostasis and neoangiogenesis. With the 
dispersive, arboreal vascular arrangements, endothelial cells are 
distributed throughout our body.

Abnormalities in the function of endothelial cells are depicted 
in several neonatal conditions, such as intraventricular hemorrhage 
(IVH), retinopathy of prematurity (ROP), hypoxic-ischemic 
encephalopathy (HIE), bronchopulmonary dysplasia (BPD), acute 
kidney injury (AKI), and necrotizing enterocolitis (NEC). Endothelial 
markers may be helpful in the diagnosis, monitoring, prognosis, and 
clinical management of many neonatal conditions. Therapeutic 
targeting of microvascular structure and function may also be 

useful in neonatal conditions. The current article merges peer-
reviewed evidence arising from our research as well as extensive 
literature review from notable databases, such as Scopus, EMBASE, 
and PubMed.

or I g I n o f En d ot h E l I A l cE l l s
The vascular system plays a vital homeostatic role in all vertebrates 
by promoting nutrient transport, oxygen, waste products and 
metabolites, immune surveillance, and the autoregulation of 
perfusion via chemical stimuli and hormones that help in the 
communication between the blood vessels and underlying 
tissues. Endothelial progenitor cells (EPCs) were discovered in 
the late 1990s resulting in a paradigm shift in our understanding 
of angiogenesis. The endothelium consists of a single layer of 
cells lining blood vessels in the body and is formed very early in 
gestation. Angiogenesis refers to the formation of new capillaries 
from existing vessels, while vasculogenesis refers to de novo 
formation of blood vessels during embryonic development.1–3 
There are several sources of endothelial cells, including the neural 
crest cells, embryonic mesoderm, and hemangioblasts. These have 
been summarized in Figure 1.
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• Differentiation from embryonic mesoderm: These primitive 
mesodermal cells differentiate into hematopoietic precursors 
or angioblasts, and these cellular subsets can both develop into 
endothelial cells.4,5 The intraembryonic endothelium forms a 
primitive vascular labyrinth2,6 shortly after gastrulation in the 
extraembryonic yolk sac. The endothelial/vascular maturation of 
mesodermal cells is induced by signals emanating from visceral 
endoderm,7 such as increased production of growth factors 
such as the basic fibroblast growth factor (bFGF) or FGF2, bone 
morphogenetic protein 4 (BMP4), and the vascular endothelial 
growth factor (VEGF).3,8

The transition of mesenchymal into endothelial cells may be 
a reversible, bidirectional process. The activation of transforming 
growth factor-β, bone morphogenetic protein, wingless/integrated 
(Wnt), and the Notch signaling pathways may be important in 
a mechanistic sense.9,10 The “dedifferentiation” and activation 
of endothelial cells involve a change in appearance from a 
characteristic cobblestone to a more elongated, “mesenchymal” 
shape with increased migratory and proliferative capacity. These 
transformed cells lose some of the intercellular junctional proteins 
and related barrier function7,10 but become pro-inflammatory 
with higher levels of leukocyte adhesion molecules (intercellular 
adhesion molecule 1, vascular cell adhesion molecule 1), cytokines, 
and various growth factors.11 However, with alterations in function, 
these changes may also shorten the lifespan of these cells. Such 
endothelial-to-mesenchymal transitions have been noted in 
various pathological conditions marked by vascular injury, chronic 
inflammation, and shear stress.10,11

• Differentiation from hemangioblasts: Plein et al.12 showed that 
nearly a third of all endothelial cells in the brain and up to 
60% of those in the liver may originate from hemangioblasts 
differentiating into erythro-myeloid progenitors (EMPs). 
These EMP-derived endothelial cells express high levels of the 
gene Hoxa. In another study, Feng et al.13 showed that these 
intraembryonic endothelial cells likely do not originate from 
circulating EMPs that express the cluster differentiation (CD) 
45 (protein tyrosine phosphatase receptor type C)+. Csf1r-
expressing EMPs may also not consistently differentiate into 
endothelial cells in the brain, liver, heart, and lungs.

The term “hemangioblast” was coined by Murray14 early in the 
20th century to describe a subset of cells that can differentiate into 
either endothelial or hematopoietic cells during embryogenesis. This 
hypothesis found favor in the physical proximity of hematopoietic 
and endothelial lineages within blood islands,14,15 but the conclusions 
were not definitive due to the structural complexities in the 
developing blood islands and also because of the limited number 
of cells available to study during these early stages of development. 
Previous imaging and tissue engineering indicating spatiotemporal 
associations between these embryological hematopoietic and 
endothelial lineages16,17 and studies indicating that human embryonic 
stem cells are differentiated in vitro into both hematopoietic and 
endothelial cell lineages18 have largely been refuted.

Recent literature suggests that some of the hemogenic 
endothelium may be a source of hematopoietic stem cells (HSCs). 
Lineage-tracing studies, ex vivo culture, and time-lapse confocal 
imaging show that hematopoietic cells, including HSCs herald 
from a hemogenic endothelium, and form an intermediate 
endothelial state.4,19,20 Hemogenic endothelium is a specialized 
subset of the endothelium with only a transient capacity to 
produce hematopoietic cells through endothelial-to-hematopoietic 
transition.21 In murine models, endothelial cells that lose endothelial 
characteristics to assume a more hematopoietic phenotype begin 
to co-express surface markers CD144, CD31, KDR, CD117, and CD34, 
but not the hematopoietic markers, such as CD41, CD45, CD73, 
and Ter-119.21–24 Human hematogenic endothelial cells express 
the surface markers CD43, CD34, CD144, CD117, CD90, CD45, and 
CD105, but low CD38, and almost not CD45RA.22,25

The HSCs are self-renewing cells with multilineage reconstitution 
potential following transplantation into a recipient. After birth, 
HSCs are seen predominantly in the bone marrow and form a 
self-renewing pool at the apex of the hierarchical network of 
hematopoiesis. Some HSCs are also known to differentiate into 
hematopoietic progenitor cells (HPCs).22,26 The HPCs differ from 
HSCs with relatively limited self-renewal and engraftment potential.

Bone marrow-derived EPC: EPCs in the bone marrow have been 
redefined in numerous recent consensus statements to possibly 
originate from the following:

• Endothelial Progenitor Cells: EPCs express surface markers, 
such as factor VIII, CD31, CD34, E-selectin (CD62E), intercellular 
adhesion molecule (ICAM)-1 (CD54), von Willebrand factor (vWF), 
and VCAM-1 (CD106).1,27–29 EPCs can migrate to the peripheral 
blood and express surface adhesion molecules that regulate the 
movement of these cells to and away from the blood.

• Mesenchymal Stem Cells: Data on mesenchymal stem cells 
(MSCs) being a source of endothelial cells are controversial. 
Colony-forming units of fibroblasts (CFU-Fs) in the bone marrow, 
also known as the MSCs, express CD29, CD71, CD73, CD90, CD144, 

Fig. 1: Origin of endothelial cells. Overall schematic of the common 
origin of endothelial progenitor cells and the erythroid, lymphoid, 
myeloid precursors. Hematopoietic and endothelial progenitor cells 
are derived from a common precursor, the hemangioblast. Embryonic 
stem cells give rise to neural crest cells, mesoderm, and hemangioblasts. 
Hemangioblasts are derived from the yolk sac endothelium. Neural 
crest cells differentiate into mesenchymal stem cells, which tissue-
resident precursors through chondro-, osteo- and adipogenesis. 
Endothelial precursors can arise from the yolk sac, myeloid precursors, 
and hemangioblasts
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CD120a, CD105, CD106, and CD 124,30–33 but no CD34, CD31, 
vWF, vascular endothelium cadherin (VE-cadherin), VEGFR2, 
CD62E, VCAM-1, and ICAM-1.30–33 CD44 was detected in some 
studies,31,33 but not in others.30 MSCs expressing VEGFR2, vWF, 
and VE-cadherin are most likely endothelial progenitors.30,32,33 
The discovery that mesenchymal cells can rescue damaged 
endothelial cells was demonstrated using laser scanning 
confocal microscopy to show that mitochondrial transfer was 
facilitated by a tunneling nanotube-like structure between 
human umbilical vein endothelial cells and MSCs.34

En d ot h E l I A l cE l l ph E n ot yp E s
The phenotypic markers on endothelial cells can vary between 
various vascular structures in a particular organ and also between 
different organs. There may also be important structural variations 
notable within capillaries, veins, and arteries. The endothelium 
found in veins and arteries may seem to be comprised of an 
uninterrupted, continuous layer of cells; the capillary endothelium 
in various tissues can show more obvious differences and may 
appear continuous, discontinuous, or fenestrated.35 These spatial 
and temporal variations have been correlated with differential 
expression of various messenger RNA (mRNA) and proteins.

The first reported arterial EC marker was a transmembrane 
ligand ephrinB2 arterial.36 Notch signaling is vital to arterial EC 
differentiation. Loss of Notch signaling leads to a loss of the 
expression of ephrinB2 in the arteries in zebrafish.37 The first 
reported marker for venous EC was the ephrin B2 receptor tyrosine 
kinase EphB4.36 Venous EC differentiation is recognized as a default 
EC differentiation pathway, resulting from inadequate activation of 
Notch signaling during the differentiation of angioblasts to ECs.38,39 
Lymphatic ECs are formed as a result of differentiation from venous 
ECs. Prox-1 is the most functional and specific EC of lymphatic origin. 

Disruption of mouse Prox-1 disrupts lymphatic vessel development 
and budding of lymphatic ECs.40 Insufficient activation of VEGFR3 
signaling leads to hypoplastic lymphatic vessels.41

Endothelial cells have diverse microenvironments across 
vascular beds and display unique structural and morphologic 
heterogeneity across organs. The EC-translating ribosome 
affinity purification (TRAP) has emerged as a powerful tool 
to analyze the in vivo EC translatome across several diverse 
vascular beds to provide greater accuracy, sensitivity, and cellular 
resolution instead of whole-tissue RNASeq. TRAP identified 82 
gene markers shared by five vascular beds (lung, heart, kidney, 
liver, and brain), such as Tek and pan-EC markers such as Eng, 
Nos3, Cdh5, and Robo4.42

Table 1 summarizes various endothelial cell markers; some 
are expressed after activation of growth factors and inflammatory 
cytokines, and others refer to specific endothelial cells in different 
organs or tissues. Endothelial cell phenotypes include the 
following:

• Endothelial cells precursors: Embryonic ECs as a cell lineage 
expand without contribution circulating precursors or new 
angioblasts are the current consensus.12 The relationship of 
circulating endothelial progenitors to myeloid cells remains 
subject to controversy.43 Cells of myeloid origin are CD14+, 
while EPCs are CD14−. However, monocytes or macrophages 
(CD14+ cells) can adopt an endothelial phenotype during 
angiogenesis.44

• Brain Endothelium: In the central nervous system, endothelial 
cells regulate plasma filtration and the movement of circulating 
cells through the blood-brain barrier, most likely via the 
assembly of tight junctions.45,46 Cerebral microvasculature likely 
originates from the meningeal vessels, but the subsequent 
angiogenesis involves the whole brain.47

Table 1: Specific human and murine endothelial cell markers 

Type of marker Name of marker Species expressed Cells expressed

Constitutive markers 
expressed in different 
endothelium

CD31/PECAM-1154 Human, murine Endothelial cells, B and T lymphocytes, 
platelets, monocytes, neutrophils

Bandeirea simplicifolia lectin binding155 Murine Endothelial cells

Vascular endothelial cadherin39,156 Human, murine Endothelial cells, trophoblasts, macrophages

CD3420 Human, murine Endothelial cells, hemopoietic precursors

Thrombomodulin157 Human, murine Endothelial cells, smooth muscle cells

Monoclonal antibodies 
used to identify specific 
endothelial cells

BMA-120158 Human ECs, mesothelium, glomerular epithelium

EN4158 Human Endothelial cells, leukocytes, platelets

EN 7/44159 Human Endothelial cells in tumors and inflammatory 
tissues

Endothelial cell markers 
induced by inflammatory 
cytokines

CD54/ICAM-122,160 Human, murine ECs, leukocytes, epithelium, fibroblasts

CD62E/E-selectin21 Human, murine Endothelial cells, postcapillary venules

Endothelial cell markers 
induced by angiogenesis

KDR/Flk-1 (VEGFR-2)120,132,161 Human, murine Endothelial cells

Flt-1 (VEGFR-1)120,126,162 Human, murine Endothelial cells

Tie-157,163 Human, murine Endothelial cells

Tie-2/Tek57,163 Human, murine Endothelial cells

CD, cluster differentiation; PECAM-1, platelet endothelial intercellular adhesion molecule; BMA, biotinylated monoclonal antibody; EN, endothelium  
antibody; E-selectin, endothelial cells selectin; KDR/Flk-1, kinase insert domain receptor/fetal liver kinase 1; Flt-1, Fms-related receptor tyrosine kinase 1; 
VEGFR, vascular endothelial growth factor receptor; Tie and Tek, receptor tyrosine kinase genes
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hE t E r o g E n E I t y I n Epcs
EPCs are a heterogeneous population of mononuclear cells 
originating in the bone marrow and can be mobilized to the fetal/
postnatal circulation.48–50 EPCs make up 1–5% of all bone marrow 
cells and about 0.0001–0.01% of monocytes circulating in the 
peripheral blood.51 These cells express endothelial antigens, like 
CD31, vWF, VE-cadherin, endothelial nitric oxide synthase (eNOS), 
and VEGFR2.52–55 The differentiation of hemangioblasts into 
endothelial cells has been studied in greater detail (Fig. 2). Based 
on phenotypical and biological properties, the EPCs are believed 
to be comprised of early and late EPC subgroups. Early EPCs give 
rise to the conventional colony-forming unit-endothelial cells 
(CFU-Es) and augment angiogenesis in a concentration-dependent 
or paracrine manner, whereas the outgrowth and differentiation 
of late EPCs promote the development of vascular networks.56 
Early EPCs are spindle-shaped, CD133 + CD45 +, and have limited 
proliferative capacity, a relatively short lifespan of about 3–4 weeks, 
and secrete angiogenic factors, such as VEGF, interleukin-8, and 
the CXC-ligand 8/CXCL8. Late EPCs are cobblestone-shaped, CD31 
+ KDR +, appear at 2–3 weeks, may live up to 12 weeks, proliferate 
rapidly, and express VE-cadherin, Flt-1, and CD45.56,57 Both early 
and late EPCs seem to have comparable vasculogenic capacities.

Based on gene expression prof iles, endothelial cells 
increasingly seem to be a heterogeneous population. Endothelial 
subpopulations have been identified that show differences in 

the expression of bone morphogenic protein-2, -4; ephrin-4, and 
neuropilin-1. In the skin, distinct endothelial cells express platelet 
and endothelial cell adhesion molecule 1 (PECAM-1), notch-1, and 
leukocyte markers (ICAM-1, L-selectin, notch 2, CD36, and CD163).55 

The aorta shows at least 3 distinct subpopulations, one comprised 
of lymphatic endothelial cells, whereas the other two seem to be 
specifically involved in angiogenesis, lipoprotein processing, and 
extracellular matrix production.58 The adult mouse lung contains 
a distinct subpopulation of endothelial cells that expresses high 
levels of carbonic anhydrase 4 (Car4) and is distinct from arterial 
and venous macrovascular, and microvascular endothelial cells.59 
Car4-high endothelium is located throughout the lung periphery, 
expresses high levels of CD34 and VEGF receptors, and responds 
to VEGF-A.  High numbers of Car4-high ECs can be seen in lung 
regions regenerating after influenza- or bleomycin-induced injury. 
The discovery of endothelial subsets with differing capacities for 
angiogenesis has opened exciting therapeutic possibilities.

En d ot h E l I A l cE l l fu n c t I o n
Endothelial cells show a vast heterogeneity in function. The 
vascular endothelium is exposed to and responds to numerous 
tissue microenvironments, resulting in a substantial phenotypic 
heterogeneity in the vascular system. Epigenetic and non-epigenetic 
factors are responsible for determining this heterogeneity in the 
endothelium. Marcu et al.60 studied endothelial cells isolated from 

Fig. 2: Differentiation of endothelial progenitor cells. Hemangioblasts differentiate into hematopoietic stem cells and endothelial progenitor cells. 
Hematopoietic stem cells and endothelial progenitor cells express three markers cluster of differentiation (CD) 34, CD 45, CD133, and vascular 
endothelial growth factor receptor-2 (VEGFR2). CD133 is a marker for immature hematopoietic stem cell, while CD34 is a classic hematopoietic 
stem cell marker. Hematopoietic stem cells give rise to myeloid cell lineage, which express CD14 and CD45, and are CD133 negative, which 
ultimately give rise to monocytes and macrophages. As endothelial progenitor cells differentiate, they lose CD133 and begin to express CD31, 
CD144, vascular endothelial cadherin, VEGFR2, endothelial nitric oxide synthase (eNOS), and von Willebrand factor (vWF). Endothelial progenitor 
cells are positive for both hematopoietic stem cell marker CD34 or CD133 and an endothelial marker, such as VEGFR2. Endothelial progenitor cells 
do not have exclusive surface markers, rather share similar markers with mature endothelial cells
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thromboxane (TXA2) and endothelin-1(ET-1).62 Any imbalance of 
these vasoactive factors leads to dysfunction of the endothelium.

Endothelial Cells in Angiogenesis
The onset of neovascularization or angiogenic switch73 has several 
triggers, such as metabolic stress, hypoxia, inflammatory stimuli, and 
immune response, and may also be related to genetic mutations.74 
During hypoxic conditions, hypoxia-responsive transcription factors 
regulate the expression of genes that allow tissues and cells to 
acclimatize to low oxygen conditions.74 VEGF as an endothelial 
cell-specific mitogen is unique for its roles in promoting endothelial 
cell proliferation and vascular permeability.49,75 VEGF can stimulate 
blood vessel development through the process of vasculogenesis 
or angiogenic sprouting, whereas ephrinB2 and Ang1 promote 
vascular remodeling and maturation of the vasculature.49,76 VEGF 
has three major isoforms that originate from alternative splicing, 
namely VEGF-A120, VEGF-A164, and VEGF-A188;77 these isoforms also 
exhibit anti- and pro-angiogenic splice variants. VEGF is known to 
have two transmembrane receptors, VEGFR1, otherwise known 
as the feline McDonough sarcoma (fms)-related receptor tyrosine 
kinase 1 (Flt1), and VEGFR2, otherwise known as the kinase insert 
domain receptor (Flk-1). VEGFR1 is known to be expressed either as 
a soluble Flt1 receptor (sFlt1) formed through alternative splicing of 
the Flt1 mRNA75 or as the membrane-bound Flt1. The two isoforms 
of VEGFR1 have a binding affinity that is tenfold higher for VEGF-A 
than VEGFR2.78 VEGF can prevent apoptosis in umbilical vein 
endothelial cells and human dermal microvascular endothelial by 
inhibiting the activity of stress-activated protein kinase/c-junNH2-
kinase (SAPK/JNK) and activating the mitogen-activated protein 
kinase (MAPK) pathway.79

VEGF and Notch show synergistic effects to promote the 
formation of blood vessel branches. VEGFR2, not VEGFR1, stimulates 
the induction of tip cells and promotes vascular sprouting (Fig. 3).80 
Notch is activated by the delta-like ligand 4 (DLL4) in neighboring 
endothelial cells; conversely, DLL4 inhibits tip cell behavior through 
the upregulation of VEGFR1 and the downregulation of VEGFR2 
and VEGFR3 receptors.80,81 For effective angiogenesis, VEGF acts 
cooperatively with several factors, such as the angiopoietins 
(Ang).82 VEGF and Ang both have receptors on endothelial cells. 
Ang-1 and -2 bind to tyrosine kinase receptors, Tie 1 and Tie 283 
(Fig. 3), while Ang-1, -2, and -4 all bind to the Tie 2 receptor.84 
Ang-1 promotes vascular integrity by promoting endothelial cell 
migration, inhibiting endothelial cell apoptosis, promoting the 
generation of capillary-like structures, and recruiting pericytes 
to vascular tissues.84,85 Ang-1–Tie 2 signaling is shown to assist 
the maintenance of quiescent endothelial cell phenotype. Tie 2 
interacts with the p85 subunit of phosphatidylinositol-3-kinase 
(PI3K) to activate the PI3K-AKT pathway, leading to increased 
survival and chemotaxis of endothelial cells.86,87 AKT activation 
inhibits the forkhead transcription factor FKHR (FOXO1), which 
may protect endothelial cells from apoptosis.88 Ang-1 and its 
binding to Tie 1 can promote vascular remodeling and are generally 
considered pro-angiogenic, whereas Ang-2 counteracts these 
effects and may be anti-angiogenic.89,90 Ang-2 is regarded as an 
agonist of Tie 2 and has been shown to stimulate Tie 2/Akt signaling, 
as well as inhibit the expression of FOXO1-target gene to enable the 
regulation of transcription and apoptosis. Ang-2 may also inhibit 
vascular permeability and acts as an autocrine agonist of Tie 2 and 
protect stressed endothelial cells.91

the lungs, heart, liver, and kidneys, and showed organ-specific 
ECs to have a unique expression of gene clusters, potential for 
angiogenesis, barrier properties, and metabolic rates, each of 
which enables their organ-specific functional and development 
properties. Endothelial cells are known to be highly ubiquitous 
and one of the most functionally diverse cell systems. Vascular 
endothelial lining regulates blood flow, nutrient delivery and 
waste removal; blood coagulation; inflammation; angiogenesis; 
and vascular remodeling through autonomous and intercellular 
signaling mediated via neurotransmitters, hormones, and 
cytokines; and interaction with several cells, such as smooth muscle 
cells, pericytes, cytokines, and blood cells.61 Prostacyclins and 
endothelium-derived nitric oxide (NO) cause vasodilation, while 
superoxide, endothelin, and thromboxane induce vasoconstriction; 
both sets of mediators regulate tissue perfusion.62

Endothelial Cell Barrier Function
The endothelial lining surface area is large and facilitates the 
substance exchange between blood and tissues. In humans, the 
endothelial surface area is estimated to be about 350 m2.63,64 Cells 
in the endothelial cell monolayer are linked to one another via tight, 
adherent, and gap junctions, which then connect to cytoplasmic 
proteins and the cytoskeleton.65 Interestingly, endothelial cells 
maintain a tight barrier function throughout the process of vascular 
remodeling; vasculogenesis stimulants, such as VEGF-A, do not 
change microvascular permeability in the inner blood-retina 
barrier in vivo or in vitro, even when specific changes may be seen 
in transcellular transport or in tight or adherens junctions.66–68

The plasma membranes of closely aligned endothelial cells form 
an important barrier with tight junctions. The main transmembrane 
constituent of these junctions is the occludins.69 Below the tight 
junctions, the adherens junctions are comprised of several proteins, 
including the surface adhesion glycoproteins, VE-cadherins, which 
form a zipper-like component at the base of endothelial cells. These 
proteins connect with their cytoplasmic tail to the underlying 
actin‐based microfilament cytoskeleton.70,71

Endothelial Cell Response to Shear Stress
Endothelial cells react actively to blood flow, predominantly 
to mechanical cues with polarizing changes in conformation, 
electrical charge, or to the release of biochemical stimuli, such as 
nitric oxide or prostacyclin.30,31,72 At rest, endothelial cells typically 
are shaped like a polygon, but under conditions of stress, they 
elongate in the direction of flow, thereby reducing the resistance 
to moving fluids.30 In response to shear stress, cultured endothelial 
cells elongate and become oriented along the direction of blood 
flow32 by reorganizing the cytoskeleton.33 Shear stress is known to 
directly activate the endothelial NO synthetase (eNOS) promoter 
and increase its expression, and also promote the release of 
endothelial cell factors that promote endothelial cell survival while 
inhibiting leukocyte migration, coagulation, and smooth muscle 
proliferation.30,72

Endothelial Cell as Regulator of Vascular Tone
Endothelial lining of vessels regulates vascular tone and function in 
response to numerous neurotransmitters, hormones, and vasoactive 
factors.62 The endothelium releases various vasoactive factors that 
can be vasodilatory, such as NO, prostacyclin (PGI2), and endothelium-
derived hyperpolarizing factors (EDHF) or vasoconstrictive, such as 



Neonatal Endothelium

Newborn, Volume 1 Issue 1 (January–March 2022) 49

flowing leukocytes to slow these cells down, followed by a 
few halting, rolling tumbles on the endothelial surface. These 
interactions are gradually strengthened with the leukocyte 
activation and their subsequent adherence in the endothelium. 
These stationary leukocytes then migrate into the interstitium 
through spaces between adjacent endothelial cells. As one can 
imagine, this is an area of intense study. During transmigration 
across the vascular endothelium, leukocytes can take either the 
paracellular path to squeeze their way through between adjacent 
endothelial cells, or less frequently, show transcellular migration 
across individual endothelial cells.97 The principal  endothelial 
adhesion molecules engaged in the attachment and transmigration 
of leukocytes include CD34, intercellular adhesion molecule 1 
(ICAM1, CD54), endomucin (a membrane-bound glycoprotein 
expressed luminally by endothelial cells), ICAM2, the glycosylation-
dependent cell adhesion molecule-1 (GLYCAM1), podocalyxin 
(a member of the sialomucin protein family), mucosal vascular 
addressin cell adhesion molecule 1 (MADCAM1), P-selectin, 
junctional adhesion molecule A (JAM-A), JAM-B, CD 99, vascular 
cell adhesion protein 1 (VAM1), CD106PECAM1, E-cadherin, and 
single-chain type-I glycoprotein.98–101

Endothelial Cells and Coagulation
Endothelial cells are important modulators of coagulation both 
in the physiological conditions and also during inflammation and 
infection. Endothelial cells express anticoagulant factors on their 
outer membrane surface. Loss of surface thrombin-binding proteins, 
such as thrombomodulin, and downstream protein C-mediated 
signaling play a vital role in minimizing thrombin activation and 

In the brain, Ang-1 can be neuroprotective and inhibit apoptosis 
in brain neurons by activating phosphatidyl‐inositol 3‐kinase and 
also promoting the phosphorylation of Akt and restoring caspase-3 
cleavage.92 Coadministration of VEGF-A and Ang-1 synergistically 
increased DNA synthesis, cell proliferation, endothelial cell 
migration, and sprouting more than either agent alone.93

Endothelial Cells and Inflammation
Endothelial cells can modulate the recruitment of inflammatory 
cells to locations of injury and produce cytokines, growth factors, 
colony‐stimulating factors, and chemokines in response to 
mechanical or chemical stimuli.52,94,95 These cytokines can then 
induce a feed-forward cycle by promoting cell–cell interactions 
and the proliferation and survival of endothelial cells and also 
by inducing an endothelial cell pro-inflammatory phenotype 
that produces cytokines [interleukin (IL)‐1], chemokines [IL‐8, 
monocyte chemoattractant protein (MCP)‐1], tumor necrosis 
factor (TNF), and adhesion molecules [vascular cell adhesion 
molecule (VCAM)‐1, intercellular adhesion molecule (ICAM)‐1, and 
endothelial (E)‐selectin], all of which recruit leukocytes to sites of 
injury.53,54 Activated endothelial cells recruit leukocytes to sites of 
infection, which is critical to host defense. Upregulation of related 
adhesion and ligands on these leukocytes by bacterial or host pro-
inflammatory mediators promotes adherence to endothelial cells 
and focused migration to the sites of infection, where these cells 
may phagocytize and kill the pathogens.96

During inflammation, leukocytes migrate across the vascular 
endothelium into the tissues in a series of steps. The first steps 
involve relatively weak, adhesive interactions with the rapidly 

Fig. 3: Endothelial markers in inflammation and angiogenesis. VEGF works together with angiopoietins during inflammation and angiogenesis, 
and both have receptors on endothelial cells. Ang-1 and -2 bind to their receptors Tie 2. Ang-1–Tie 2 signaling contributes to maintaining a 
quiescent endothelial cell phenotype. Ang-1 is pro-angiogenic and required for vascular remodeling, while Ang-2 counteracts their effects as 
anti-angiogenic. VEGF has two transmembrane receptors, Flt1 or VEGFR1 and Flk-1 or VEGFR2. VEGFR1 has two forms generated by alternative 
splicing, a membrane-bound Flt1 and a soluble Flt1 receptor, VEGF signals through VEGFR2 to promote angiogenesis. VEGFR1 (Flt-1) serves to 
limit the actions of (VEGFR2) Flk-1. Ang-2 binds to Tie 2 to activate P13-K/Akt signaling. VEGF-VEGFR2 activates MAPK/AKT signaling pathways
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the leukocytes into peripheral tissues. Such recruitment responses 
in neonates may be weaker in most organs when compared to 
adults and in preterm in comparison to term neonates.106,107 In 
other organs such as the intestine, particularly during necrotizing 
enterocolitis, the recruitment may be enhanced. Inflammation of 
vascular endothelium during sepsis leads to altered chemotaxis 
and leukocyte transmigration because of the impaired endothelial 
expression of adhesion molecules, such as E-selectin, ICAM-1, and 
P-selectin.108 Some of these changes may be related to altered 
expression of pro-inflammatory ligands such as TNF, which can 
affect the expression of adhesion molecules VCAM-1 and ICAM-1.29

Biomarkers that regulate endothelial cells and reflect 
their microenvironment may be useful in monitoring sepsis. 
Angiopoietins stimulate endothelial cells to increase or suppress 
inflammation. Ang-1 expressed in peri-endothelial cells can 
suppress inflammatory responses and stabilize the microvasculature 
by inhibiting nuclear factor κB (NFκB) activation. In contrast, 
Ang-2, which is expressed preferentially in endothelial cells, is  
pro-inflammatory and can increase the permeability of vessels and 
destabilize them. Ang-1 binds to Tie 2, the tyrosine kinase receptor 
to maintain the endothelial resting state, thereby suppressing 
vascular permeability during inflammation (Fig. 3).109

Endothelial Cells in the Neonatal Brain
Endothelial cells  in the brain microvasculature have an intricate 
relationship with neuronal development and function, suggestive 
of a neurovascular crosstalk. Endothelial cells stimulate the 

clotting in physiology. The loss of these factors leads to decreased 
ability of endothelial cells to modulate coagulation and inhibits the 
release of endothelium-derived factors, such as PGI2 and NO.102

En d ot h E l I A l cE l l s I n nE o n AtA l dI s o r d E r s
Fetal organs, especially the eye, lungs, and kidneys, show important 
vascular development in the third trimester of gestation. Therefore, 
impaired vascular development has been implicated in numerous 
conditions of prematurity, such as retinopathy of prematurity 
(ROP), bronchopulmonary dysplasia (BPD), and acute kidney injury 
(AKI). In neonates, endothelial cell function is well regulated in 
physiology and known to be altered in pathological states. Table 2 
lists biomarkers of endothelial cell in various neonatal diseases.

Endothelial Cells in Neonatal Sepsis
The incidence of early-onset neonatal sepsis with positive cultures 
in newborns is about 0.98/1,000 live births and most likely higher in 
very-low-birth-weight (VLBW) infants.103 The incidence of late-onset 
sepsis is more variable and could be as high as 30% in extremely 
low-birth-weight (ELBW) infants.104 A dysregulated immune host 
response is associated with the pathogenesis of neonatal sepsis. 
Gram-negative sepsis has high mortality rates, with most mortality 
occurring in the acute phase, within the first three days of onset of 
sepsis.105

During inflammation, the vascular endothelium expresses a 
plethora of cytokines with a local chemotactic gradient that recruits 

Table 2: Endothelial biomarkers in neonatal diseases

Neonatal disease Biomarker
Functional  
properties Functional use 

IVH IL-686 Pro-inflammatory Increased serum levels in IVH

IL-887 Pro-inflammatory Increased serum levels in IVH and white matter 
injury

ROP VEGF-A Pro-angiogenic Increased in ROP

sVEGFR-2120 Pro-angiogenic Elevated in premature infants with ROP

sTie2120 Pro-angiogenic Elevated in premature infants with ROP

IL-6118,119 Pro-inflammatory Increased amniotic fluid levels

IL-8119 Pro-inflammatory Increased amniotic fluid levels

NEC PAF70,154,165 Pro-inflammatory Elevated in blood early in NEC

TGF-β153,166 Pro-inflammatory Increased blood levels in NEC

Sepsis Ang-181 Anti-angiogenic Decreased in sepsis

Ang-281 Pro-angiogenic Elevated in sepsis

BPD Ang-1128 Anti-inflammatory Reduced serum levels in BPD

Ang-2128 Pro-inflammatory Increased levels in BPD

ICAM-1128 Pro-inflammatory Increased serum levels correlate with BPD severity

IL-1β128 Pro-inflammatory Increased serum levels in infants with both BPD and 
pulmonary hypertension.

MCP-1128 Pro-inflammatory Lower serum levels of MCP-1 

VEGF126 Pro-angiogenic Decreased levels in BPD

Tie 2126 Pro-angiogenic Decreased levels in BPD

IL, interleukin; VEGF, vascular endothelial factor; VEGFR, vascular endothelial factor receptor; Tie, receptor tyrosine kinase gene; TGF-β, transforming 
growth factor-beta; PAF, platelet-activating factor; Ang, angiopoietin; ICAM, intercellular adhesion molecule; MCP, monocyte chemoattractant protein
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hypovascular retinal areas,132 and restricted to the inner retina.133 
Electroretinograms correlate retinal vascular abnormalities to 
inner retinal dysfunction in OIR mice.134,135 Comparative retinal 
histology following in vivo imaging showed prolonged over-
expression of VEGF, microglial activation, abnormal malaligned 
neuronal synapses, and apoptosis in OIR mice.136 A subpopulation 
of resident macrophages (M2) has been shown to be an important 
phenotype during angiogenesis.137,138 Exogenous administration 
of pro-angiogenic isoform of VEGFA165a in a mouse model of OIR 
promoted earlier revascularization,126 likely by targeting endothelial 
cell proliferation via increased angiogenic signaling through VEGF 
receptors.

Several proteins and support cells are intricately linked 
to endothelial cell function. Endothelial cells have surface 
protein receptors for integrins that play a role in angiogenesis 
and inflammation.139 VEGF induces expression of the collagen 
receptors, α1β1 and α2β1 integrins.140 The recruitment of pericytes 
has been demonstrated to be important in vascular maturation, 
for stabilization of the vasculature and remodeling of the early 
endothelial plexus into a more mature vascular network.141,142 
Disruption of endothelial-pericyte connections leads to 
exaggerated regression of vasculature and abnormal remodeling.141 
Angiopoietins play a role in the pathogenesis of ROP. Ang-2 was 
inhibited by hyperoxia and increased during relative hypoxia in a 
rat model of OIR.143 Biomarkers have been investigated for ROP 
monitoring and disease severity. IL-6 levels in the umbilical cord 
were noted to be elevated in preterm infants with severe ROP, 
while high cord levels plasma C5a were associated with ROP that 
required laser therapy.144

Inflammatory cytokines have been associated with ROP in both 
the peri- and postnatal periods. Studies of amniotic fluid samples 
from 175 premature infants born between 23–32 weeks showed 
that higher IL-6 and IL-8 levels were associated with a higher risk of 
advanced ROP.145 Similarly, Pieh et al. showed that premature infants 
with high plasma levels of the soluble VEGF receptor 2 (sVEGFR-2) 
and its soluble membrane-bound tyrosine kinase receptor (sTie) 
are associated with an increased risk of ROP.146

Endothelial Cells in Bronchopulmonary Dysplasia
Bronchopulmonary dysplasia (BPD), also known as chronic lung 
disease of prematurity, is related to increased supplemental 
oxygen use during the early neonatal period147,148 and occurs 
in about 40% of infants born below 29  weeks gestation.149,150 
A coordinated development of the pulmonary vasculature is 
required for normal lung development growth. Preterm birth may 
disrupt the lung vascular growth during the saccular and alveolar 
stages of pulmonary development, and aberrant development 
of the pulmonary vascular bed may lead to impaired alveolar 
development.148,150,151 Postmortem lung examination of infants 
with BPD showed low levels of VEGF mRNA and reduced VEGF 
immunostaining, as well as a reduction in angiogenic receptors Flt-1 
and Tie 2 in the infants with BPD compared to those without BPD.152 
Inhibiting VEGF during development decreases alveolarization and 
pulmonary arterial density.153,154 Higher levels of ICAM-1, Ang-2, 
and IL-1β, and reduced levels of Ang-1 and MCP-1 are correlated 
with BPD severity.155

Endothelial Cells in Pulmonary Hypertension
Endothelial dysfunction is centrally implicated in pulmonary 
hypertension. Pulmonary hypertension is a multifactorial and 
complex condition, associated with the aberrant endothelial cell 

proliferation and differentiation of neuronal precursors toward 
neuronal lineage.50 During postnatal development, endothelial 
cells promote excitatory synaptogenesis through upregulation of 
VEGF expression in cortical neurons by increased signaling through 
the P38/MAPK pathway.110 The premature infant is sensitive to 
neurologic injury partly due to the exposure of their immature 
vascular network to extrauterine physiologic abnormalities in 
oxygen tension, biochemical, and environmental factors.

Intraventricular hemorrhage occurs in about 20% of infants 
born before 32  weeks’ gestation and is a major cause of 
neurodevelopmental morbidity and mortality in premature 
infants.111,112 IL-6 may be an important early biomarker for IVH. In one 
study, serum IL-6 levels were elevated in infants with IVH and were 
associated with increased risk of neonatal morbidity at less than 
28 days after birth.113 If high levels of IL-8, an important neutrophil 
and monocyte chemokine that is produced by macrophages, 
smooth muscle cells, and the endothelium, persisted for >1 day, 
the risk of IVH and white matter injury was higher.114

Hypoxic-ischemic encephalopathy (HIE) is a encephalopathy 
resulting from perinatal asphyxia that leads to neuronal death from 
activation of inflammatory cells and overexpression of apoptosis-
related proteins.115 In HIE, elevated inflammatory cytokine levels 
such as IL-6, TNF, and IL-8 recruit leukocytes to the site of injury 
and damage endothelial cell integrity.116,117 In infants with HIE, 
early microvascular injury may have a critical impact on neuronal 
damage.118

Endothelial Cells in Retinopathy of Prematurity
Premature infants continue to develop the retinal vasculature after 
birth and are susceptible to altered vascular development such 
as in retinopathy of prematurity (ROP). These abnormalities in 
angiogenesis can be recapitulated in murine models such as those 
of oxygen-induced retinopathy (OIR).119–121 ROP involves altered 
endothelial cell proliferation and survival,122–124 and consequent 
abnormal retinal vascularization. Increasing data suggest that 
ROP involves dysregulation of VEGF expression.125,126 The vascular 
development in ROP shows two distinct phases: an initial phase of 
vaso-obliteration that is triggered by hypoxia and a subsequent 
period of abnormal neovascularization triggered by retinal hypoxia 
to meet the demands of the metabolically hyperactive retinal cells 
and neurons.127 These abnormalities can be seen in the mouse 
model of OIR, where mouse pups exposed first to hyperoxia develop 
vaso-obliteration of retinal vessels and then show abnormal 
neovascularization.128,129

In vivo assessments in a mouse oxygen-induced retinopathy 
model have revealed several physiologic and functional 
phenotypes in the developing retinal as a result of aberrant 
angiogenesis. Alterations in arterial and venous oxygen tension 
(PO2) result in increased arterio-venous PO2 gradients, which 
indicate increased oxygen extraction and possible underlying 
ischemia.130 Whole-mount staining of retinas shows central 
vaso-obliteration in neonatal OIR mice with recovery to full 
vascularization by P21.120,128,129 However, longitudinal live retinal 
imaging using fluorescein angiography revealed capillary 
avascularity, arterial tortuosity, and venous dilation in neonatal 
OIR mice compared to fully vascularized, normal caliber arteries 
and veins in room-air-raised mice, and consequent prolonged 
loss of capillary density with the paucity of neovascular buds on 
capillaries of adult OIR mice in spite of full peripheral vascularization. 
Spectral-domain optical coherence tomography revealed thinner 
retinas in neonatal mice with OIR,131–134 more pronounced in the 
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endothelial-dependent vasodilator activity in AKI. L-arginine and 
eNOS cofactor tetrahydrobiopterin may attenuate acute ischemia-
reperfusion renal injury by preserving medullary perfusion.167–169

En d ot h E l I A l cE l l s A s th E r A p E u t I c tA r g E ts

Therapeutic advances to regulate angiogenesis have been 
challenging and limited in success employing pro- and anti-
angiogenic factors. This could be due to the complex biology of 
angiogenic factors, their multiple receptors, and versatile functions. 
Preclinical studies of pro-angiogenic cell therapies or microRNAs 
targeting show promise of alternate therapeutic strategies.170

Bevacizumab (Avastin) is a promising non-selective anti-VEGF 
drug that was first used to treat metastatic cancers171 but was 
subsequently approved for the treatment of ROP and other ocular 
conditions.171–173 Selective pro-angiogenic VEGF isoforms are 
being explored preclinically, such as administration of VEGFA165a 
microparticles for the treatment of ROP.126 Ranibizumab, a 
humanized Fab fragment that can block all VEGF isoforms, reverses 
VEGF-stimulated delocalized tight junctions, proliferation and 
migration of cells, and delocalization of tight junction proteins in 
retinal endothelial cells, may also be useful in some stages of ROP.68 
Targeting endothelial-to mesenchyme transitions may also be 
useful in specific stages of vascular disease. Relaxin, a calcimimetic 
agent, Cinacalcet, and Losartan are shown to inhibit endothelial-
mesenchymal transitions.174–176

There may be some utility in monitoring biomarkers indicative 
of damage to the endothelium during neonatal sepsis, such as 
endothelial growth factors or components of tight junctions 
(TJs) that shed into circulation upon endothelial damage and 
quantifying plasma and urine levels of soluble components of 
endothelial wall and glycocalyx and degraded glycocalyx.177 Soluble 
triggering receptor expressed on myeloid cells-1 (sTREM-1) is able 
to differentiate sepsis from non-sepsis cases, with an area under 
curve (AUC) of 0.97 to diagnose proven or suspected neonatal 
sepsis, compared to 0.96 of IL-6, and 0.8 of Endocan.178 The ratio 
of Ang-1 is shown to correlate with bacteremia.179 Higher Ang-2 
levels correlate with clinical sepsis.180 Endothelial cell dysfunction 
has also been implicated in NEC, and several therapies are being 
explored to modulate the ensuing inflammatory necrosis. Enteral 
administration of TGF-β2 was protective in mice with experimental 
NEC-like injury.181 PAF has been implicated in NEC pathogenesis 
and shows promise as a biomarker.182 Resveratrol (trans-3,4′,5-
trihydroxystilbene) is a naturally occurring polyphenol found in 
red wine, berries, and peanuts and has been shown to improve 
endothelial NO production and endothelial redox balance, 
as well as inhibit the activation of the endothelium following 
pro-inflammatory and metabolic stress.183 Protocols have been 
developed that enable the differentiation of h-iPSCs very efficiently 
into competent h-iECs, thereby enabling the development of 
perfused vascular networks in vivo.184 Despite the early promises 
of tissue engineering involving endothelial cells, applications 
to clinical practice are limited. Understanding the cellular and 
molecular mechanisms related to physiologic and pathologic 
angiogenesis, both in pediatric and adult tissues, will enhance 
advances in tissue engineering.185

co n c lu s I o n

Endothelial cells are critical regulators of vascular homeostasis 
through intricate interactions with vascular smooth muscle 

proliferation with concurrent neoangiogenesis and the alteration 
in the secretion of vasoactive mediators, such as prostacyclin, 
NO, serotonin, ET-1, and thromboxane. The lung endothelium is 
heterogenous and different from systemic endothelium in both 
function and structure. The pulmonary endothelium’s function 
includes maintaining barrier integrity, homeostasis, vascular tone, 
leukocyte trafficking, and production of necessary growth factors.156 
The normal endothelium is typically in a stable, “quiescent” 
state. When the endothelium is disturbed and “activated” by 
stress, infection, disease, or injury, endothelial cells tend to 
express specific proteins and markers, such as ICAM-1, VEGF, and 
E-selectin, which causes exaggerated proliferation, coagulability, 
and vasoconstriction.156,157 In pulmonary hypertension, some 
of the triggers of endothelial activation are inflammation, shear 
stress, reactive oxygen species, genetic mutations, and defect in 
angiogenesis.156

Endothelial Cells in Necrotizing Enterocolitis
Necrotizing enterocolitis (NEC) is an inflammatory bowel disease 
seen in premature infants that is associated with high morbidity 
and mortality. Maldevelopment of the microvasculature of the 
intestinal mucosal and abnormally altered intestinal blood flow 
are implicated in the pathogenesis of NEC. There is low resistance 
of the intestinal vasculature across the intestines of the newborn 
infant, mediated by increase in the production of  nitric oxide 
by the endothelium.  Neonatal swine models showed abnormal 
vasoconstriction responses to severe hypoxemia, resulting in 
intestinal ischemia.158 Hypoxia in the preterm neonate can inhibit 
NO production and result in intestinal injury and NEC.159 There is 
also evidence of VEGF dysregulation; premature infants exposed to 
hyperoxia may show decreased VEGF expression and VEGF/VEGFR-
regulated pro-angiogenic signaling pathways and diminished 
development of the intestinal microvasculature. These limitations in 
the splanchnic vasculature may not be insufficient for the relatively 
limited metabolic needs in the first few days after birth but may 
become inadequate with increasing feeding volumes in the later 
neonatal period. In experimental NEC, VEGFR2 protein and VEGFR2 
activity have been shown to be low preceding the onset of intestinal 
injury.160,161 Similarly, inhibition of VEGFR2 led to decreased 
endothelial cell proliferation and intestinal microvascular network 
development.161 Administration of dimethyloxalylglycine (DMOG), 
a propyl hydroxylase enzyme inhibitor, increased the expression 
of VEGF-A in the intestines of neonatal pups, but the splanchnic 
effects of DMOG were abolished by inhibiting VEGFR2 signaling.162 
Further investigations are needed to investigate the strategies to 
modulate angiogenic signaling through the VEGF-VEGFR2 pathway, 
which may possibly protect against NEC.

Endothelial Cells in Neonatal Acute Kidney Injury
Early changes in capillary blood flow and endothelial cell injury 
leading to inflammation, ischemia, and pro-coagulation may play 
a crucial role in the pathogenesis of early and chronic ischemic AKI. 
In rat models, ischemic kidneys were unable to autoregulate 
blood flow and exhibited vasoconstriction when renal perfusion 
pressure decreased.163 The organization of the cytoskeletal 
network of endothelial cells and small arterioles is altered during 
renal ischemia-reperfusion injury, which disrupts endothelial cell 
tight junctions as indicated by the disintegration of VE-cadherin 
in renal microvasculature.164,165 The loss of the integrity of barrier 
function could have been the result of matrix metalloproteinase-2 
or -9 activation.166 There is also some evidence to show impaired 
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cells, circulating cells, and surrounding support cells, and their 
connections to blood and tissue components make them vulnerable 
to minute alterations in the composition of blood, mechanical stress 
of blood flow, injury, or inflammation. Endothelium based on the 
microenvironment can transform from pro-inflammatory to anti-
inflammatory properties, as well as vasodilation or vasoconstriction, 
and pro- and anti-thrombotic properties. Future investigations 
focused on understanding endothelial cell heterogeneity may 
provide insights into vascular-bed-specific therapies in neonates.
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