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AbstrAct
Zika virus (ZIKV) is an arthropod-borne flavivirus transmitted through bites of the Aedes mosquitoes. Infected mothers can vertically transmit 
ZIKV to their fetuses, particularly during the first and second trimesters. Infections beginning during early gestation can cause congenital Zika 
virus syndrome (CZS), which may be marked by arrested development and/or altered healing in the nervous system. There can be microcephaly, 
craniosynostosis, intracranial calcifications, ventriculomegaly, low brain volume and/or cortical atrophy, and hypoplasia/altered myelination in 
the corpus callosum, cerebellum, and brainstem. There may also be altered development with polymicrogyria, pachygyria, and lissencephaly. 
Clinically, infants with CZS may show facial dysmorphism, pulmonary hypoplasia, altered growth and development, hypertonia, hyperreflexia, 
limb contractures, and arthrogryposis multiplex. Perinatal infections can present with irritability, seizures, eye involvement, and sensorineural 
hearing loss (SNHL). Congenital zika virus syn and perinatal infections contrast with those acquired after birth, which usually have a relatively 
milder course. Overall, the mortality rate can reach 4–6%. Laboratory evaluation can include polymerase chain reactions on serum, cerebrospinal 
fluid, and urine; testing for immunoglobulin M (IgM); and plaque reduction neutralization tests (PRNTs) to confirm the specificity of these Zika 
virus IgM (ZIKV IgM) antibodies. Unfortunately, no specific treatment is available; most measures are largely supportive. 
Keywords: Congenital Zika syndrome, Newborn, Real-time reverse transcription-polymerase chain reaction, Magnetic resonance imaging, 
Zika virus infection.
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IntroductIon
Zika virus (ZIKV) was first isolated from a sentinel primate in Uganda 
in 1947.1 It is a mosquito-borne virus named after the Zika Forest in 
Central Africa.2,3 It circulated unnoticed in some regions in Africa 
and Southeast Asia until 2007, until an outbreak was recorded 
in the Yap Island in Micronesia.4,5 The virus has since spread to 
parts of Central and South America and the Caribbean.6–8 A major 
epidemic was seen in Brazil in 2015.9,10 The incidence has gradually 
risen with new cases now having been reported from nearly 80 
countries worldwide.11–14 

The term congenital zika virus syndrome (CZS) has been used 
to describe the complicated clinical course seen in neonates born 
to mothers infected with ZIKV.15–17 Several prospective cohort 
studies have shown that fetal ZIKV exposure in utero is associated 
with adverse birth outcomes and neurologic sequelae.18–20 Unlike 
postnatal ZIKV infections after birth and in adults, congenital 
infections tend to be more severe and may be associated with 
neurological and multi-system complications.13,21 In this article, 
we have focused on these vertically transmitted ZIKV infections.22 

Zika Virus: Classification and Structure
Zika virus belongs to the Flaviviridae family of positive-strand RNA 
viruses that includes human pathogens such as the mosquito-
transmitted dengue virus, West Nile virus, Japanese encephalitis 
virus, yellow fever virus, and the tick-borne encephalitic virus.23–31  
Flaviviruses are enveloped viruses containing an RNA genome 
of about 11 kilobase (kB).32 There are multiple copies of a capsid 
protein, which is surrounded by an icosahedral shell consisting 
of 180 copies each of the envelope glycoprotein (about 500 
amino acids) and a membrane protein (about 75 amino acids its 
precursor of about 165 amino acids); both are anchored in a lipid 

membrane.32–36 There are seven non-structural proteins that are 
needed for replication, assembly, and for antagonizing the host 
innate immune responses.37–40

Flaviviruses evolve through three stages, including immature, 
mature, and fusogenic.41,42 These are non-infectious, infectious, and 
host membrane–binding states, respectively.39 The immature “spiky” 
immature particle is assembled in the ER and is non-infectious.43 
It matures through conformational changes of the surface 
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glycoproteins into a “smooth” particle in the low-pH environment 
of the trans-Golgi network.44 The fusogenic stage is marked by an 
endosomal fusion loop seen in conditions with acidic pH.45 

In this group of viruses, ZIKV specifically contains a typical 
flavivirus genome that is 10.8 kB long (Fig. 1).44 The RNA is translated 
into a single polyprotein (3,423 amino acids) that is processed 
into the 3 above-mentioned structural proteins.46 The capsid 
contains four α helices with a long pre-α1 loop and forms dimers; 
the pre-α1 loop contributes to the tighter association of dimeric 
assembly.35,36,47,48 The membrane protein contains two loops 
that anchor it to the membrane.43 Finally, the envelope protein 
is comprised of four domains; the stem-transmembrane domain 
anchors the protein into the membrane.39 The seven non-structural 
proteins are labeled NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. 
Interestingly, some of these proteins regulate viral replication.49 
The structural proteins form the virus particle, whereas the non-
structural proteins assist in the replication and packaging of the 
genome.50 The generation of the 10 individual proteins from 
the polyprotein is regulated by viral and host proteases, and the 
efficiency of furin, a host protease that cleaves the viral targets.51,52

Epidemiology 
ZIKV is transmitted to humans primarily through the bites of 
infected  Aedes  mosquitoes, particularly those of the species  

Ae. aegypti  and  Ae. albopictus.53 These mosquitoes live near 
human habitations and frequently get infected with viruses such 
as Zika, chikungunya, and dengue after biting infected persons 
who are viremic such as during the first week of infection.54 These 
mosquitoes lay eggs in standing water such as near the edges of 
lakes and ponds, in plants in swamps and marshes, or in containers 
that hold water such as buckets, bowls, and animal dishes.55 These 
mosquitoes bite humans and can transfer the viruses to other 
hosts.56 

A pregnant woman can pass ZIKV to her fetus during pregnancy 
or the perinatal period.57 Zika virus has also been found in mother’s 
own milk, although viral transmission through breast milk has not 
been confirmed yet.58 Flavivirus nucleic acid has been detected 
in breast milk.59 However, we do not know the long-term effects 
of postnatal ZIKV transmission.60 The benefits of breastfeeding 
may outweigh the risk of transmission through breast milk, and 
the Centers for Disease Control and Prevention (CDC) continue to 
encourage mothers to breastfeed even if they lived/traveled to 
endemic areas or were infected with ZIKV.61 

Zika virus can be sexually transmitted from an infected person 
to his or her partners.62 Many individuals with minimal symptoms 
can be infectious; studies suggest that ZIKV can be passed from an 
infected persons before the onset of symptoms, during acute illness, 
or after apparent clinical recovery.63 Studies are on to determine 

Figs 1A and B: (A) Schematic illustration of ZIKV: Zika virions are enveloped, 18–45 nanometer icosahedral structures. The genome is a positive 
strand RNA enclosed in a capsid and surrounded by a membrane. The RNA contains 10,794 nucleotides encoding 3,419 amino acids. (B) The 
ZIKV genome. The 10.8 kB long genome is translated into a single polyprotein, which is then processed into a capsid protein (C), an envelope 
glycoprotein (E) and membrane protein (proM, processed to M), and 7 non-structural proteins that are labeled NS1, NS2A, NS2B, NS3, NS4A, NS4B, 
and NS5. UTR = Untranslated region; prM = uncleaved pro-membrane protein; C = capsule; E = envelope; NS = non-structural protein. The mature 
ZIKV particle is about 50-nm in diameter. It has 180 copies of the E and M proteins embedded in the membrane. The E protein is comprised of four 
domains: A stem-transmembrane domain pair and three ectodomains I, II, and III seen outside of the membrane. The E protein exists as a dimer 
and predominates on the surface of the virion with the smaller M protein residing underneath. The M protein has a smaller extracellular region 
and a stem-transmembrane domain. Three E proteins dimers lie parallel to one another in a raft configuration, with the virion having a total of 30 
rafts.  The non-structural proteins assist in replication and packaging of the genome.
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the duration for which ZIKV remains detectable in semen and 
vaginal fluid of infected individuals, and their infectivity.64 The 
virus may remain detectable in semen longer than in other body 
fluids such as vaginal fluids, urine, blood, conjunctival fluid, and 
amniotic fluid.65,66

Reports from Brazil and other countries have documented the 
presence of ZIKV in blood donated for transfusions.67 During the 
French Polynesian outbreak, 2.8% of blood donors tested positive 
for ZIKV.68 There are some reports of laboratory-acquired ZV 
infections, although the route of transmission could not always be 
established.69 There is a need to investigate these reports because 
ZIKV diagnostic testing and laboratory research have expanded 
with increased risk of occupational exposure to laboratory workers 
and biomedical researchers.70 The emergency committee of the 
World Health Organization (WHO) announced ZIKV disease as a 
Public Health Emergency of International Concern in 2016 and 
triggered the exploration of global involvement to define the 
pathophysiology and deal with the related clinical challenges.71 

Pathophysiology
The mechanisms of the ZIKV passage across the placental barrier, 
the association between viremia and the development of CZS, 
and the exact timing of placental and fetal infection with maternal 
viremia are still not clear.72 ZIKV can infect placental macrophages, 
trophoblasts, and endothelial cells, and then enter the fetus from 
these cells.73 In infected fetuses, ZIKV has been isolated from the 
brain and cerebrospinal fluid.21 However, the impact of placental 
infection in defining the syndrome’s severity has not been 
confirmed yet.74 

ZIKV infections of the fetal brain can damage the neuronal 
progenitor cells and interrupt neuronal proliferation, migration, 
and differentiation.75 These events may slow or interrupt brain 
growth beginning at 20 weeks of gestation.76,77 The risk of 
neurodevelopmental abnormalities in infected fetuses is the 
highest when maternal infection appears during the first and 
second trimesters of pregnancy because it is a crucial period for 
brain development.78 Interestingly, some neonates who were 
exposed to ZIKV in utero did not show obvious abnormalities at 
birth but developed impairments over time.79,80 In these infants, 
ZV replication may have continued after birth and interrupted 
brain growth.79 Clearly, ZIKV-exposed fetuses need continued, 
comprehensive follow-up after birth.81 

Histopathology 
ZIKV is a neurotropic virus that specifically attacks neural progenitor 
cells.82,83 Electron micrographs show ZIKV as dense particles in the 
damaged endoplasmic reticulum (ER) in these cells. This ER stress/
unfolded protein response not only suppresses the proliferation of 
cortical progenitor cells but also damages mature neurons in the 
cerebral cortex.83,84 Specific groups of enveloped structures with a 
bright interior resembling the residue of replication complex also 
support ZIKV replication in the neonatal brain.39 

Zika infections in the developing brain may manifest with 
diffuse arachnoiditis with ependymitis and vasculitis.85 Some 
foci show meningoencephalitis, ventriculomegaly or an ex vacuo 
hydrocephalus, microcephaly with lissencephaly, and cerebellar 
hypoplasia.86 An additional spectrum of parenchymal lesions was 
observed involving the whole hemispheric wall namely the cortical 
plate (CP), the intermediate, and the ventricular zones. The CP 
lesions consisted in a loss of lamination with radial glia disruption, 
focal polymicrogyria, neuronal loss, chromatin fragmentation 

with numerous apoptotic residues and mineralization.86 The loss 
of lamination can disrupt radial glia and cause a diffuse loss of 
neurons. 

Necrotic lesions can be seen in the subcortical region in the 
vicinity of damaged vessels.86 The loss of cortical neurons has been 
linked with ZIKV-associated microcephaly.87 Several neurobiological 
studies have shown increased cell death and the impaired cell 
cycle leading to a decreased neural progenitor cell proliferation, 
causing a decrease in the number of cortical neurons.88 In 
addition to ER stress, ZIKV infection can cause chromatin change 
and necroptosis.89 Viral particles have been observed in basal/
apical progenitor cells, neurons in the cortical plate, and in the 
ventricular and subventricular zones.90 The loss of callosal fibers 
and longitudinal tracts has been identified as a cause of the cerebral 
atrophy and the ventricular enlargement.91 The disruption of the 
hypothalamic and pituitary axis can cause adrenal gland atrophy.92

Immunohistochemical studies may show T-lymphocytic 
and histiocytic meningitis with abundant cerebral astroglial and 
macrophagic reactions.85  Vasculitis is marked by the presence 
of swollen endothelial cells surrounded by active microglia and 
astrocytes.93,94 In the cerebellum, the width of the external and 
the internal granular layers was reduced.85 The neurons were 
shrunken and contained fragmented chromatin (karyorrhexis).95,96 
Macrophages and numerous hypertrophic astrocytes were 
present.96 In the spinal cord, the astrocytic and macrophagic 
reaction was mild and neurons were spared.83 The longitudinal 
tracts were missing. Glial fibrillary acidic protein-reactive antibody 
confirmed the astroglial nature of the gliosis seen close to the 
necrotic regions in the subventricular and in the intermediate 
zones.21

In situ hybridization shows ZIKV particles within the cerebral 
parenchyma mainly in the ventricular/subventricular zone and in 
the cortical plate.77 The neuronal precursor cell is the main target 
for ZIKV leading to cell death, although, neuronal cells in all stages 
of maturity can be affected.82 These changes can explain the 
microcephaly and poor cortical gyration.97 Moreover, viral cerebritis 
can affect cerebral embryogenesis and result in microcephaly or 
other central nervous system abnormalities.85,98 

There may be inflammatory changes in other organs. The 
placenta may contain a Hofbauer cells hyperplasia with signs 
of inflammation.99 Truncal vessels may show fibromuscular 
hypertrophy causing a narrowing of the lumen.85 Some cases may 
show features of acute chorioamnionitis, villitis, and funisitis.100 
Some studies have shown an interstitial lymphocytic infiltrate in 
the testes.101

Clinical Manifestations 
The full CZS spectrum is evolving with the recognition of the 
following subtle manifestations in growing infants:

• Fetal growth restriction.102–107 
• Congenital anomalies in 7–40% of infants.108–111 Central nervous 

system findings include large ventricles, microcephaly, and 
intracranial calcifications.112 Some infants show craniosynostosis, 
low brain volume and/or cortical atrophy (Fig. 2), and hypoplasia/
altered myelination in the corpus callosum, cerebellum, and 
brainstem. There may also be altered structural development 
with polymicrogyria, pachygyria, and lissencephaly. Clinically, 
infants with CZS may show facial dysmorphism, pulmonary 
hypoplasia, altered growth and development, hypertonia, 
hyperreflexia, limb contractures, and arthrogryposis multiplex. 
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• Perinatal infections can present with irritability, seizures, eye 
involvement, and sensorineural hearing loss (SNHL). Congenital 
Zika syndrome and perinatal infections contrast with those 
acquired after birth, which usually have a relatively milder course.

• Fetal/perinatal death.113 

There are five signs that have recorded frequently in infants with 
CZS as follows: 

• Decreased brain tissue with subcortical calcifications.
• Microcephaly.
• Hypertonia with limitations of body movement seen shortly 

after birth.
• Congenital joint contractures such as arthrogryposis and 

clubfoot.
• Eye lesions, such as focal retinal pigmentary mottling and 

macular scarring.

The following findings are relatively more specific to CZS:114  
(a) Partially collapsed skull with severe microcephaly, (b) subcortical 
calcifications with thin cerebral cortices, (c) focal pigmentary retinal 
mottling with macular scarring, (d) congenital contractures and 
arthrogryposis, and (e) severe early hypertonia.115

Microcephaly
The incidence of microcephaly has varied across studies. In some 
small cohorts, up to 90% of cases of CZV had microcephaly, and 
most cases have severe congenital microcephaly.98,116 Other studies 
have shown lower incidence figures, with only 5–9% of infants 
with CZS having a small head circumference.117 In a large cohort, 
Cauchemez et al.103 estimated the frequency of microcephaly to 
be about 95 per 10,000 women infected during the first trimester. 
Severe microcephaly has been noted in 7–9% of all infants with 
CZS.100,108,113,118–123 About 10% had moderate microcephaly.106

Microcephaly has been traditionally defined as an occipital head 
circumference (OHC; measured between occipital protuberance 
and glabella) that is 2 standard deviations (SDs) less than the average 
for gestational age (GA) or corrected GA. Severe microcephaly is 
defined as an OHC below 3 SDs.124 It can be a primary abnormality 
seen at birth or a secondary failure of head growth that develops 
over time.121,125 Proportionate microcephaly is a restriction of 
head circumference similar to that of length and weight. Infants 

with disproportionate microcephaly have a restricted head 
circumference but a normal weight and length.126 

Infants with CZS frequently show disproportionate craniofacial 
dimensions where the face appears larger compared to a small 
head.127 Up to 78% of infants with CZV infections develop 
craniosynostosis;107,114 many show cutis gyrata where the 
continuously growing redundant scalp tissue begins to show 
folds over the cranium that is not growing any further.115 A CZS-
associated microcephaly may reflect a less-than-normal number of 
gray matter neurons with reduced brain volume. Microcephaly is 
usually seen when ZV infections occur early in pregnancy; however, 
proportionate microcephaly has been observed in the offspring of 
women infected as late as the third trimester of pregnancy.128,129 In 
rare instances, microcephaly has been noted to resolve over time.129 

Infants with CZV-related microcephaly frequently have 
seizures, cerebral palsy, and neurodevelopmental abnormalities. 
Many infants have abnormal facies, thin cerebral cortex on cranial 
imaging, macular scarring, focal pigmentary retinal changes, SNHL, 
irritability, hypertonia, hyperreflexia, and congenital contractures 
and talipes equinovarus due to decreased movements in utero.97,130 
In one cohort, 6% of infants had congenital anomalies, and 9% had 
neurodevelopmental abnormalities such as developmental delay, 
hearing loss, and seizures.103 Neuroimaging showed major structural 
lesions in 42% and minor abnormalities in 24%. The physical 
(neurological) examination was abnormal in 21%. Nine percent were 
small-for-gestational age (SGA). Eye abnormalities were recorded 
in 7%, dysphagia in 3%, hearing defects in 3%, clinically evident or 
subclinical seizures (abnormal electroencephalogram) in 3%, and 
minor abnormalities in 10%.100

Ocular Manifestations
About 25% of infants with CZS showed eye abnormalities, which 
was considerably higher than the 6–7% incidence in the general 
population.131,132 These findings included macular abnormalities; 
focal pigmentary retinal changes; chorioretinal atrophy, and optic 
nerve abnormalities such as optic nerve hypoplasia, increased cup-
disk ratio, and pallor.133–136 Other changes included pigmentary 
clumping, coloboma, subretinal hemorrhages, vascular tortuosity, 
and abnormal retinal vessels with focal vascular dilation.137–140 
Iris colobomas, microcornea, microphthalmia, lens subluxation, 
cataracts, intraocular calcif ication, congenital glaucoma, 
strabismus, and nystagmus were also seen in some infants.141–145 
The eye findings in CZS were not progressive.132 Cortical visual 
impairment was the most likely cause of the loss of vision in infants 
with CZS.146,147 Major visual impairment in CZS was seen in 30%. 
However, the rate of visual impairment was as high as 84% when 
the associated eye findings were included.148

Other Abnormalities
Sensorineural hearing loss is seen in 7–12%.104 Arthrogryposis 
and club foot have been reported and are likely neurogenic in 
origin due to fixed posture in utero.149 Other clinical signs of CZS 
include hypertonia, hyperreflexia, irritability, feeding difficulties, 
and dysphagia.150 Seizures may occur due to underlying brain 
malformations, but may also be present in children without 
apparent CNS abnormalities with a median age of onset of a 
seizure is 4 months.106,151 The seizures are usually refractory with 
poor initial control with medical therapy. Notably, 30–40% of 
infants with CZS are SGA.107,130 Congenital heart disease (CHD) 
occurs in 10–15% and is mostly non-severe, such as secundum 
atrial septal defect (ASD), patent ductus arteriosus (PDA), and small 

Fig. 2: Axial CT image of an infant with congenital ZIKV infection and 
severe microcephaly shows cerebral atrophy with ventriculomegaly, 
prominent cerebrospinal fluid space, and extensive, punctate cortico–
subcortical calcifications.
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muscular or peri-membranous ventricular septal defect (VSD) and 
few had hemodynamically significant CHD defect such as large 
membranous VSD.152,153

Perinatal Infections
Infants infected around the time of birth develop acute 
encephalopathy and can present with irritability, seizures, eye 
involvement, and SNHL. 

Postnatal Infections
Most patients remain asymptomatic. A small minority develops a 
mild course of fever, rash, and conjunctivitis.58,154,155 

Neuroimaging 
Imaging can detect neurological abnormalities such as intracranial 
calcifications, ventriculomegaly, low brain volume, delayed 
myelination, polymicrogyria, pachygyria, lissencephaly, corpus 
callosum, brainstem, cerebellar thinning or hypoplasia, large 
cisterna magna, and increased extra-axial fluid spaces.156,157 

Intracranial calcifications due to ZIKV are seen the most 
frequently at the junction of the cortical and subcortical white 
matter. Notably, these lesions differ from the punctate lesions 
caused by cytomegalovirus. However, calcification may occur in 
the periventricular region, basal ganglia, thalamus, brainstem, and 
cerebellum.158 These calcifications may diminish in number, size, or 
density with age in most children,159 although these changes do not 
correlate with clinical improvement as most patients; these patients 
may still develop severe neurological sequelae. Notably, 40% of 
infants with hydrocephalus may require a ventriculoperitoneal 
shunt. Cranial ultrasound is an important screening tool but it 
often needs to be followed up with magnetic resonance imaging 
(MRI) for detailed evaluation. CT scans can detect intracranial 
calcifications while MRI is better for structural brain disease. A 
negative sonographic examination in infants who have seizures, 
microcephaly, and tone abnormalities should be followed by a 
more extensive neurological evaluation by specialists and a specific 
imaging evaluation.

Evaluation
A detailed evaluation as detailed in the following list is needed 
for infants with ZIKV infections confirmed by maternal laboratory 
test and clinical evidence of CZI such as microcephaly and/or other 
congenital anomalies:160

• Physical examination including anthropometric measurements 
(head circumference, length, and weight), neurologic 
abnormalities, and dysmorphic findings assessment.

• Laboratory testing, including complete blood counts, and a 
metabolic panel with liver function tests.

• Head ultrasound. 
• Hearing test using auditory brainstem response to assess 

hearing. 
• Eye examination by an experienced ophthalmologist before or 

shortly after discharge from the hospital.
• Other specialties consultation (a) neurologist; (b) infectious 

disease specialist; (c) clinical geneticist; (d) early intervention 
and developmental specialists; and (v) family and supportive 
services. 

• Other optional consultations (a) orthopedist, (b) physiatrist,  
(c) physical and/or occupational therapists, (d) lactation 
specialist, (e) nutritionist; (f) gastroenterologist; (g) speech or 

occupational therapist; (h) endocrinologist for evaluation; (i) 
pulmonologist; (j) otolaryngologist; and (k) cardiologist. 

The WHO and CDC define microcephaly as occipitofrontal 
circumference (OFC) above 2 SDs below the mean or below the 
third  percentile for gender, age, and GA at birth.124,161,162 Severe 
microcephaly is a HC below 3 SDs below the mean.161 Both CDC 
and WHO recommend detailed clinical assessments before making 
a diagnosis of microcephaly to decide the plans for follow-up.124 

Laboratory Evaluation
The following infants should be tested:160

• The mother has evidence of ZIKV infections during pregnancy.
• There are clinical or neuroimaging findings suggestive of CZS 

with maternal or paternal possible exposure, regardless of 
maternal ZIKV laboratory status. 

The postnatal laboratory tests include the following:160,163

• Serum and or urine for ZIKV RNA using real-time reverse 
transcriptase-polymerase chain reaction (rRT-PCR).

• Serum Zika virus immunoglobulin M (IgM) using enzyme-linked 
immunosorbent assay (ELISA).

• Cerebrospinal fluid (CSF; if available) for ZV RNA by rRT-PCR 
and ZIKV IgM.160,163 Early samples can distinguish between 
congenital, perinatal, and postnatal infection. Cord blood should 
not be used as it may yield false-positive results.160 

• Plaque reduction neutralization test (PRNT) detects specific 
neutralizing antibodies of the Zika and dengue viruses which is 
not available for routine use. It can confirm the specificity of IgM 
antibodies against the ZV, which can rule out a false-positive IgM 
test. For a positive or presumptive positive or possible positive 
or equivocal result without PRNT of the mother’s sample, a ZV 
PRNT on the infant’s initial sample is of great help. If the neonatal 
PRNT is initially positive, a repeat PRNT test should be done after 
the age of 18 months to differentiate true initial fetal infection 
from maternal passive transfer of antibodies, at which time 
maternally acquired antibodies will have waned. 

Maternal serum should be checked for ZIKV IgM and its neutralizing 
antibodies. To distinguish from other arboviruses, the infants should 
be tested for dengue virus IgM and its neutralizing antibodies. The 
interpretation of these results is complex because of the cross-
reaction between Zika and dengue antibodies. Neutralization assays 
can confirm or exclude the result. Histopathologic assessment of 
the placenta and umbilical cord can add more information. 

Interpretation and Diagnosis
Confirmed diagnosis: In the first few days of life, ZIKV RNA present in 
the serum, urine, or CSF are collected, regardless of IgM antibodies 
being positive or negative.160

Probable diagnosis: A negative PCR while IgM against ZIKV is 
positive which indicates probable ZIKV infection. The IgM result 
may be false-positive due to cross-reacting IgM antibodies or may 
be a result of a non-specific reactivity.164 Mother testing results 
are very important in this regard. Therefore, a positive IgM in the 
infant makes congenital ZIKV infections very likely if the maternal 
ZVI is confirmed. While the presence of CSF IgM is very suggestive 
of congenital ZIKV infections.164

Diagnosis unlikely: The congenital infection is unlikely if both PCR 
and IgM are negative.160 A negative PCR result alone cannot rule out 
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congenital infection transient viremia as it is not known the period 
of postnatal viral shedding of in utero infected newborns. Some 
authors suggest the viremic period can reach up to 67 days after 
birth.165 There is a need for evidence to definitively excluded CZV 
infection based on negative rRT-PCR and IgM, in infants with known 
ZV exposure. A negative newborn PCR test may be due to the absence 
of virus shedding in the urine despite confirmed maternal infection 
exposure. Moreover, a negative IgM test may be due to delay IgM 
antibodies release as in congenital rubella and CMV infection.

Differential Diagnosis
Infants suspected to have ZIKV infections should be evaluated 
for rubella, cytomegalovirus, and toxoplasmosis. Infections other 
than ZIKV infections frequently show hepatosplenomegaly, 
thrombocytopenia, and skin lesions.10,81,128 A detailed evaluation 
of other causes of microcephaly is also required.

Management
The management is supportive as there is no specific antiviral 
treatment for CZS. The supportive care needs to focus on (a) 
seizures; (b) feeding difficulties; (c) hypertonia; and (d) hearing 
loss.

Parents should be provided with key sets of information. 
Maternal transmission of ZIKV to the fetus may occur during labor 
and delivery. There are reports of two cases of intrapartum ZIKV 
transmission from mothers infected within 2–3 days of delivery to 
the infant. However, these infants were not symptomatic, while the 
others showed thrombocytopenia and a widespread rash.58,166,167 
ZIKV has been detected in breast milk, but there is no documented 
evidence of transmission in breast milk.154 

Testing both the mother and the baby is indicated during 
the  first 14 days after birth if the mother is exposed to ZIKV 
within 14  days of delivery with ≥2 of the following; (a) rash,  
(b) conjunctivitis, (c) arthralgia, (d) fever.166 If either or both newborn’s 
or mother’s symptoms developed within the first  week of birth, both 
newborn serum and urine ZIKV using real-time reverse transcriptase-
polymerase chain reaction (rRT-PCR) should be obtained. However, 
if available, urine from both the mother and newborn should be 
obtained in the 2nd week and should be evaluated by Zika rRT-PCR. 
A positive laboratory test confirms the diagnosis. 

If the rRT-PCR is negative 3 days after maternal symptoms, 
test for ZIKV IgM and neutralizing antibody titers. A positive test 
is suggestive of the diagnosis. Maternal ZIKV IgM and neutralizing 
antibody titers should be assessed if the newborn is symptomatic, 
and the mother is asymptomatic. Possible ZIKV exposure is not an 
indication of lumber puncture, but if the CSF is available for other 
reasons, a testing for ZIKV RNA using rRT-PCR is appropriate action.166

Follow-up

• The general pediatrics services should focus on (a) monitoring 
growth parameters such as weight, length/height, and 
HC; (b) routine immunizations; (c) anticipatory guidance;  
(d) psychosocial support; (e) other necessary testing services; 
and (f) consultations with other specialist services as needed.160

• Follow-up with experts in (a) hearing and vision; (b) neurology, 
focusing on seizures, tone abnormalities, and ex vacuo 
hydrocephalus; (c) developmental services; (d) feeding 
difficulties, breathing difficulties, choking, or coughing with 
feeding and assessment for dysphagia; (e) nutrition; and (f) 
continued supportive services and palliative care.

Prognosis
The prognosis of newborns with CZI is uncertain. The reported 
mortality rate among live-born infants with confirmed and probable 
CZI in Brazil is 4–6%.150

The prognosis of severe CZS with microcephaly and severe 
other cerebral abnormalities is very poor. However, the prognosis 
of milder forms is not known.112 Nearly 1/3 of the children are 
either below average developmental scores or have neurosensory 
abnormalities such as abnormal eye examinations and/or 
hearing assessments during the second and third  years of life.129 
Approximately 29% scored below average in a minimum of one 
developmental assessment, especially language assessments and 
2% of children may be in the autism spectrum disorder during the 
second year of life.

The presence or absence of structural and functional neurologic 
abnormalities at birth may not predict later neurodevelopmental 
outcomes.129,133 Approximately ½ of abnormal neurologic 
examination or abnormal neuroimaging findings at birth may 
develop normally in the follow-up assessments in their second 
or third years of life. About 25% of patients who appeared 
asymptomatic at birth may have delayed neurodevelopmental 
outcomes with or without abnormal hearing or ophthalmologic 
outcomes on follow-up. 

Prevention
Protection against Zika virus infections during pregnancy:
• Avoid travel to areas with mosquito transmission of ZV.168–176

• Protection against mosquito bites.177,178

• Protection against sexual transmission for a partner who traveled 
to or lives in an area with a risk of ZV.  

• Adherence to standard infection-prevention precautions.

Guidance for couples planning pregnancy:
• Reproductive-age couples in the affected areas should know 

the risks of transmission of ZV, the consequences of ZVI during 
pregnancy, and they should consider the possibility of delaying 
pregnancy.171,174

• Partners planning to conceive better to avoid or may postpone 
travel to areas where mosquito transmission of ZVI is likely unless 
the travel is very essential.179

• Wait for a minimum of 3 months after a potential exposure prior 
to a trial of conception with the use of abstinence or condoms 
during this period.180 

• Those with infertility treatment who require to use of donor sperm 
or donor egg should only obtain these gametes from laboratories 
following FDA recommendation for screening guidelines 
and avoid donors traveling to risky places within 6 months of 
donation.180 If they are using their own gametes same testing 
and timing recommendations of the FDA should be followed.113
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