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Ab s t r Ac t
Healthcare systems widely use information technology (IT) for system authentication (digital signatures), web surfing, e-mails, instant messaging, 
protecting data at rest, Voice over Internet Protocol (VoIP) telephony, and cellular telephony. To protect patient identification and healthcare 
information, cryptographic systems are widely used to secure these data from malicious third parties (adversaries). In our healthcare systems, we 
have had reasonable success in the efficient storage of the information of our patients and their families, in its timely retrieval, and in ensuring 
its safety from adversaries. However, the data are increasing rapidly and our current computational systems could be inadequate in the not-so-
distant future. In this context, there is a need for novel solutions. One possibility can be seen in quantum computing (QC) algorithms/devices 
that can provide elegant solutions based on subatomic interactions. In this review, we have summarized current information on the need, 
current options, and future possibilities for the use of QC algorithms/devices in large data systems such as healthcare. This article combines peer-
reviewed evidence from our own clinical studies with the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.
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Hi g H l i g H ts
• In our healthcare systems, we have had reasonable success 

in the efficient storage of the information of our patients and 
their families, in its timely retrieval, and in ensuring its safety 
from adversaries. However, the data are increasing rapidly and 
our current computational systems could be inadequate in the 
not-so-distant future.

• In this article, we have reviewed possible solutions based on QC 
algorithms/devices that can provide elegant solutions based on 
subatomic interactions. 

• Quantum cryptography focuses on protecting patient health 
information (PHI). During the transfer, data are first encrypted 
(encoded) and the recipient then decrypts (decodes) the 
information.

• Details of various methods of encrypting and decrypting have 
been provided. Current information on various protocols for 
QC has been summarized, and future possibilities have been 
discussed.

in t r o d u c t i o n
Healthcare systems widely use IT for system authentication (digital 
signatures), web surfing, e-mails, instant messaging, protecting 
data at rest, VoIP telephony, and cellular telephony.1–3 To protect 
patient identification and healthcare information, cryptographic 
systems are widely used to secure these data from malicious third 
parties (adversaries).4,5 Several strong encryption algorithms are 
well-known, such as the secure hash algorithm (SHA)-1, SHA-2, 
triple data encryption algorithm system (TripleDES), advanced 
encryption standard (AES), message digest (MD)-5, and Rivest–
Shamir–Adleman (RSA, named after the last names of Ron Rivest, 
Adi Shamir, and Leonard Adleman).6–9 Conventional cryptographic 
algorithms have been used in our healthcare system, but 
these systems are now beginning to show limitations with the  

ever-increasing amounts of private information being accrued 
and produced.7 These difficulties are particularly important in 
mother–infant and neonatal intensive care units (NICUs) as there 
is a need to secure the personal health information (PHI) that has 
been obtained from the whole family.10,11

In our healthcare systems, we have had reasonable success in 
the efficient storage of the information of our patients and their 
families, in its timely retrieval, and in ensuring its safety from 
adversaries.12 However, the data are increasing rapidly and our 
current computational systems could well become inadequate in 
the not-so-distant future.13 In this context, there is a need for novel 
solutions. One possibility can be seen in QC algorithms/devices that 
can provide elegant solutions based on subatomic interactions.14 
These devices resemble classical computers in the need for a 
defined input, and processing of data, and show a recognizable 
output, but do not need conventional digital semiconductor 
processors with interface busses and external networks.14 Unlike 
conventional devices, a fully-functional QC algorithm/device might 
paradoxically show an exponential increase in its capacity to process 
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data.15–19 These should be able to handle the increasing workload 
in progressively smaller intervals of time that might eventually 
become nearly immeasurable.13,14,19–22 Many of these devices 
currently do show high margins of errors, but encouragingly, many 
potential solutions can now also be seen.23

The QC models have brought exciting possibilities for 
outcomes prediction in many situations with large datasets, such 
as in hurricanes, global warming, forest fires, and pandemics.24 
These non-canonical prediction models have shown new 
possibilities for improving the efficiency and prediction of 
outcomes in our healthcare systems.14,24 The QC systems can 
help analyze large, private patient datasets without the risks of 
decryption.7,25 A staggering number of implausible events could 
possibly be solved if we can develop mechanisms to manage 
entropy related to multiple concurrent events and lower the 
error rates to levels that we tolerate in our current electronic 
semiconductor systems.13,26–28 The only dilemma is whether 
we are ready in our technological quest for solutions to accept 
probabilities instead of certainties.29,30 In this review, we have 
described the need, current options, and future possibilities for 
the use of QC algorithms/devices in large data systems such as 
healthcare.

ne e d
In the last two decades, technological advances in electronic 
medical records (EMRs), continuous monitoring of vital signs, 
telehealth, and affordable at-home testing devices have improved 
neonatal care.31–33 With families’ consent, sharing of the data 
obtained from these devices can improve efficiency in patient 
care and minimize errors.32,34 Healthcare providers can utilize 
these real-time data not only to improve patient care but also for 
clinical research focused on recording outcomes and drug trials.35 
Families’ satisfaction can also be recorded, and education can be 
more focused and improved. Diagnostics can also be evaluated 
with greater conviction by an improved recording of data and 
coordination between various medical subspecialties. Findings can 
also be analyzed better using newer modalities such as machine 
learning (ML). The entire health sector can become more data- 
driven.35 

The concerns are that all the above-mentioned datasets 
contain the PHI of the patients in electronic health records (EHRs)/
EMRs, medical devices, computers, the cloud, emails, servers, 
databases, and other associated systems.5,36 These detailed data 
make the healthcare sector easy prey to cyberattacks.5,17,36 The 
hospital systems and medical companies need to retain the trust 
of the infants’ families by focusing on patient security and access 
to their data. The Health Insurance Portability and Accountability 
Act (HIPAA) is one important example of legislation that outlines 
the maintenance of PHI and the protection of identity from fraud/
theft.37–39 The HIPAA journal40 reports an unsettling trend, showing 
a conspicuous rise in the number of healthcare records getting 
exposed every year.41 According to the data breach statistics 
published so far, 2015 has been one of the worst years with more 
than 113.27 million records being exposed. Nobody wants to 
remember the infamous “WannaCry” malware attacks of May 
2017 with data breaches in the British National Health Service and 
many reputable medical companies in the USA information.42 
Investigations showed loss of information such as dates of birth, 
credit card information, social security numbers, addresses, 
email IDs, and phone numbers, which were sold on the dark web; 

some patient records fetched up to US$1000. According to the US 
Department of Health and Human Services, such deliberate hacking 
accounts for about 75% of healthcare breaches.43 The affected 
people continue to face the brunt for the rest of their lives. 

Mother–infant units and NICUs are high-priority areas in 
hospitals where the PHI needs to be secured.44 Infants and their 
families are a heterogeneous population, with varying capacities 
to protect their identifiers and their social, financial, and health 
information.45 Mothers and other family members are at risk of 
developing transient psychological conditions which might affect 
their employability even after they have fully recovered.46 Infants 
are a uniquely vulnerable population because of limitations in their 
legal rights and capacities for autonomous decision-making.47 This 
means that special provisions are needed to ensure their protection 
from these risks, which include, but do need to extend beyond 
parental proxy consent on their behalf.47,48 We also need special 
considerations in the storage of biomedical information because of 
the sensitive nature of such data, and the potential immediate and 
longer-term implications of PHI in the context of family dynamics.48 
These require immediate determinations about who has access to, 
and control over, the infants’ PHI that can alter the life course of 
these children.48,49

cryp to g r A p Hy

Overview of Modern Cryptography
The term cryptography was derived from two Greek roots, kryptos 
meaning secret, and graphein meaning to study/write. The 
composite word, cryptography, refers to the art of securing private 
communications in presence of an eavesdropper or adversary.50 
Messages are secured by first “encrypting” the plain text into a 
cipher (a way of disguising in code) in a message that is then sent 
to the recipient.51 The recipient “decrypts” the message from cipher 
to plain text using a tool for back translation, usually referred to 
as a “key.”52 This process reduces the risk of loss of important 
information. Cryptography is broadly classified into two categories: 
Private/symmetric key cryptography and public/asymmetric key 
cryptography.53

• Private/symmetric key cryptography: In private systems, a 
single key is used for both encryption and decryption, hence 
the name symmetric. In one experiment, one of two members 
of the team wants to send a sequence of bits, 0110100 to another 
with the shared key 1110101.54 She/he encrypts the message 
using a bitwise “XOR” operation (a logical operation that stands 
for “exclusive or”). The encrypted message looks like 1000001. 
An eavesdropper who does not have access to the key fails 
to comprehend the message while the original recipient can 
decrypt it by applying the “reverse XOR” operation, yielding 
the message sequence bits 0110100. This is a classic example of 
a one-time pad encryption technique.

• Public key cryptography: Public systems are more complex than 
private key cryptography.55 The team members use more than 
one key for sending different messages to reduce the chances 
of hacking. The public key may include two mathematically-
related keys, one (public) used for encrypting that can be made 
freely available, and another (private) key that is protected and 
is needed for decrypting. The private key is usually derived 
using complex, more sophisticated mathematical systems. 
Besides the Diffie–Hellman key exchange protocol,56 two other 
public key encryption techniques are the RSA and the Elliptic 
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Curve Cryptography (ECC).57,58 Trapdoor functions that are 
easy to compute in one direction but not in the other, are used 
extensively to build public key cryptosystems.59,60

Advanced Encryption Standard
Advanced encryption standard is a kind of symmetric block cipher 
that cuts input data into chunks of fixed length and encrypts using 
a key.61,62 This is currently being used in government agencies to 
protect the data encryption standard (DES), another symmetric key 
encryption algorithm that uses a key of only 56 bits.63 Even though 
it is vulnerable to quantum attacks, higher AES key lengths with 
compounded complexity increase its safety. 

Rivest–Shamir–Adleman Encryption
In the RSA encryption systems, it might be possible to create a public 
key such as the product of two large prime numbers, p and q.64 
The encoding value may be large, c. Since the prime numbers are 
kept secret, most observers will be able to encrypt a message but 
only an operator who knows the primes will be able to decrypt it. 
The security of RSA relies on the practical difficulty of factoring the 
product of two large prime numbers, which serves as its trapdoor 
function.65

Elliptic Curve Cryptography
Elliptic curve cryptography is the study of mathematical properties 
of elliptic curves, which are a set of points (x, y), where y2 = x3 +  
ax + b.58 The variables a and b belong to a field K that may be made 
up of real, rational, or complex numbers. Fields are important 
algebraic structures that permit the application of certain 
operations on the members of the field. Elliptic curves use shorter 
keys to optimize memory storage.66 For example, the security 
provided by a 256-bit key in ECC is comparable to a 3,072-bit key 
in RSA. 

Quantum Computing
With the increasing number of transistors being used in a given 
chip, the speed of classical computers has increased but there 
are limits posed by the laws of quantum mechanics.18,67 Classical 
computers are known to operate on a binary string of “bits,” which 
are referred to as zeros and ones, and notated as “kets” (Dirac 
notations) |0⟩ and |1⟩.68,69 

The key distinguishing feature of a quantum computer is 
referred to as a “qubit.”70 Figure 1 show a schematic representation 
of bits and a qubit. Each qubit is a superposition of two independent 
unit vectors in a 2-dimensional space and can be represented 
by the column vectors.71 In other words, |0⟩ and |1⟩, which are 
independent unit vectors, would make our choice for the bases 
of the 2-dimensional vector space.71 A 2n dimensional vector 
space would be having 2n basis vectors. In summary, a qubit state 
is a superposition of the two basis vectors such that the vector is 
normalized.72 

Tensor Product
Tensor product (TP) results from an interaction between ≥2 qubit 
states. This concept helps us mathematically characterize the 
phenomenon of quantum entanglement (QE) (vide infra).73 This 
needs to be differentiated from TensorFlow quantum (TFQ), which 
is a quantum ML library for rapid prototyping of hybrid quantum–
classical ML models.74 

Quantum Entanglement 
Quantum entanglement is a physical phenomenon seen in 
quantum physics, but not in classical mechanics. QE is seen 
when the physical properties of two particles such as position, 
momentum, spin, and polarization are perfectly correlated, 
even when these particles are separated by a large distance.75 
In this situation, the total spin of these two particles will be 
predictable.76 Measurements of a particle’s properties will result 
in an irreversible wave function collapse of that particle and 
will change the original quantum state, affecting the entangled 
system as a whole.76 

Measurement Postulate 
The MP in quantum mechanics pertains to the degree the wave 
function collapse occurs.77 According to the Schrödinger equation, 
which describes the wave function in a quantum-mechanical 
system, the wave function evolves deterministically as a linear 
superposition on different states.78 In other words, after one initial 
observation, all subsequent measurements remain consistent with 
these first-time observations. 

No-cloning Theorem
This admits our inability to clone any arbitrary quantum state into 
multiple copies of itself.79 If we could, this would have informed us 
about the behavior and properties of the state by applying different 
measurement operators to the state countless times. Despite all 
the measurements, we would always have information about the 
initial state. 

Figs 1A and B: (A) A classical binary bit can only represent a single 
binary value, such as 0 or 1, meaning that it can only be seen in one 
of two possible states (off or on, false or true, low or high). Classical 
computing devices manipulate those bits with the help of logical gates 
(AND, OR, NOT); (B) In QC, a qubit or quantum bit is the basic unit of 
quantum information. It is a two-state quantum-mechanical system, 
represented by a superposition to achieve a linear combination of two 
states. Information is stored in quantum bits, or qbits. A qbit can be in 
states labelled |0> and |1>, but it can also be in a superposition of these 
states, a|0> + b|1>, where a and b are complex numbers. If we think of 
the state of a qbit as a vector, then superposition of states is just vector 
addition. Every extra added qbit can help store twice as many numbers. 
For example, with 3 qbits, it is possible to get coefficients for |000>, 
|001>, |010>, |011>, |100>, |101>, |110> and |111>
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Quantum Algorithms
Quantum algorithms are a set of instructions run on quantum 
computers similar to how classical algorithms are meant for classical 
computers.80 The two most popular quantum algorithms are 
Shor’s algorithm and Grover’s algorithm.81,82 Shor’s algorithm is an 
algorithm for finding the prime factors of an integer using a specific 
unitary operator. Unfortunately, this algorithm can undermine the 
security of RSA and ECC due to program-related issues. 

Modular arithmetic can provide insights into these algorithms. 
Grover’s algorithm, also known as the quantum search algorithm, 
is a quantum algorithm that can reduce the time needed for an 
unordered search.83,84 Simply put, an unordered search refers to 
searching for a particular element in a random list of elements 
such that no guess would bring us closer to the element we are 
looking for. The obvious way to do this would be to start from the 
first element and move onwards. Grover’s algorithm can improve 
these searches as it is based on the properties of superposition, 
entanglement, and interference.82 There is a special qubit gate 
called oracle which takes the input state and flips the phase of 
the chosen ket we are looking for and another gate which inverts 
the amplitudes of all the component kets about the mean of  
all the associated amplitudes.85 However, all problems are still 
not resolved, and some limitations might appear when full-
fledged quantum computers become a reality. Many algorithms 
such as Deutsch–Jozsa, Bernstein–Vazirani, Simon, quantum 
Fourier transform, quantum phase estimation, quantum 
counting, quantum walk search, and dense coding are being 
investigated.86–91

QuA n t u m Ke y di s t r i b u t i o n
The quantum key distribution (QKD) is a secure channel for 
encryption and decryption using the principles of quantum 
mechanics. The main tenets of quantum mechanics that makes 
QKD secure is the measurement postulate, where measurements of 
an unknown quantum system lead to a change in its state and any 
information about the initial state is lost after the measurement.92 
There are also possibilities of changes related to the no-cloning 
theorem and entanglement.

The BB84 Protocol
Named after its creators, Charles Bennett and Giles Brassard, BB84 
is a quantum protocol used to generate a private key.93 In this 
protocol, the first observer takes a series of qubits and performs 
any one of two orthogonal measurements on each qubit, such 
as the measurement of spin in the x and z directions. The first 
then send those to the second, who repeats the same job. The 
first operator, however, does not inform the second about which 
measurements were made and so the second operator will likely 
measure 50% of the qubits in the same manner as the first operator. 
After performing the experiments, they could publicly announce 
their readings and discard the measurements where they differ. 
The remaining set of measurements becomes their private key. 
An eavesdropper could then make major efforts to intercept the 
message qubit but due to the measurement postulate, she/he 
will be changing the qubit nearly 50% of the time. The no-cloning 
theorem suggests that she/he will not be able to copy these either. 
The original two operators will be able to publish a subset of their 
results and using the correlation they will be able to determine 
whether there has been any meddling with their key.

The E91 Protocol
This is a slight variation of the BB84 protocol and uses 
entanglement.94 The first operator prepares several entangled 
qubits95 and sends those to the second; she/he will keep one qubit 
and send the entangled partner to the second operator. The rest of 
the protocol resembles BB84. However, it is worthwhile to note that 
the first operator will not have to tabulate the measurements as the 
“correlatedness” of the entangled pairs will be certain.

Future Possibilities
Shor’s algorithm suggests that many public key encryption 
techniques like ECC and RSA that are based on factoring and discrete 
logarithmic problems will remain considerably insecure in the 
face of QC.96 However, there are a few quantum-safe encryption 
techniques today that would last at least for the next century, even if 
QC becomes a reality in the next 2–3 decades. The National Institute 
of Standards and Technology had recently listed four encryption 
methods that are ready for the post-quantum world: Cryptographic 
Suite for Algebraic Lattices (CRYSTALS)-Dilithium (a lattice-based 
signature scheme), a cryptographic signature algorithm FALCON, 
SPHINCS+ (a stateless hash-based signature scheme, which 
advances the SPHINCS signature), and CRYSTALS-Kyber.97–99 Active 
research is going on developing lattice cryptography, multivariate 
cryptography, code-based cryptography, supersingular isogeny 
key exchange protocol, and symmetric key systems like AES and 
SNOW- 3G.100–104 Campagna recently postulated that there will be 
three main questions about the number of years needed to fulfill our 
health sector needs: (a) Our encryption to be secure; (b) to make our 
IT infrastructure quantum-safe; and (c) before a large-scale quantum 
computer will be built.105 The physical hardware required to build 
qubits includes transmons and superconductivity traps, and we will 
also need insights into cavity quantum electrodynamics.13,106,107 
Significant efforts are also being propagated toward developing 
topological quantum computers. On a positive note, researchers 
have recently built the world’s largest functioning QKD network 
using photons and relay optics.108

or c i d
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