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Ab s t r Ac t
Periodontitis is an often overlooked but important risk factor for both preterm birth and adverse neonatal outcomes. With preterm birth being 
the leading cause of mortality for all children under the age of 5, any potentially modifiable risk factor associated with preterm birth must be 
fully evaluated. Periodontal disease is due to bacterial infection of the gingivae with resulting localized and systemic inflammation that can 
have profound effects in both nonpregnant and pregnant individuals. In pregnancy, several studies have demonstrated an association between 
periodontitis and preterm birth. Furthermore, extensive evidence demonstrates that fetal exposure to systemic inflammation during gestation 
predisposes to brain injury and neurodevelopmental delay. Thus, periodontitis and the resulting inflammatory cascade not only affect the 
pregnant individual but also have significant lifelong consequences on the development and well-being of future offspring. In this review, we 
will first discuss the epidemiology, prevalence, and pathophysiology of periodontitis. We will then explore the medical literature evaluating the 
association between periodontitis and preterm birth prior to delving into the potential for neurodevelopmental delay and brain injury among 
offspring. Finally, we will conclude by discussing future directions and unanswered questions related to periodontitis and its relationship with 
preterm birth and adverse neonatal outcomes.
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In t r o d u c t I o n
Periodontitis is an often overlooked but important risk factor for 
both preterm birth and adverse neonatal outcomes. With preterm 
birth being the leading cause of mortality for all children under 
the age of 5, any potentially modifiable risk factor associated with 
preterm birth must be fully evaluated.1–3

Periodontal disease is due to bacterial infection of the gingivae 
with resulting localized and systemic inflammation that can have 
profound effects in both nonpregnant and pregnant individuals. 
In pregnancy, several studies have demonstrated an association 
between periodontitis and preterm birth.4–9 Furthermore, 
extensive evidence demonstrates that fetal exposure to systemic 
inflammation during gestation predisposes to brain injury and 
neurodevelopmental delay.10–13 Thus, periodontitis and the 
resulting inflammatory cascade not only affect the pregnant 
individual but also have significant lifelong consequences on the 
development and well-being of future offspring. 

In this review, we will first discuss the epidemiology, prevalence, 
and pathophysiology of periodontitis. We will then explore 
the medical literature evaluating the association between 
periodontitis and preterm birth prior to delving into the potential for 
neurodevelopmental delay and brain injury among offspring. Finally, 
we will conclude by discussing future directions and unanswered 
questions related to periodontitis and its relationship with preterm 
birth and adverse neonatal outcomes. 

Pe r I o d o n t I t I s

Epidemiology
Periodontitis is a noncommunicable disease of significant concern 
as it has a prevalence of 45–50% worldwide and is the sixth most 
common human disease.14 Some studies even report periodontitis 
occurring in nearly 90% of certain populations.15,16 Resource-limited 
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settings have a substantially higher burden of periodontal disease 
and dental caries. For example, among nearly 400 pregnant or 
recently postpartum women in Malawi, the prevalence of dental 
caries was recently estimated to be 69.3% and composite dental 
disease (including dental caries and periodontal disease) was 
76.7%.17 Similar results have been found elsewhere with rates of 
gingivitis occurring in 47, 86, and 89% of pregnant women in Brazil, 
Thailand, and Ghana, respectively.18–20

Having a periodontal disease is associated with overall poorer 
health. Known risk factors for periodontitis include smoking, 
low socioeconomic status, low educational level, obesity, stress, 
diabetes, and increasing age.21,22 Periodontal disease is known 
to be independently associated with other noncommunicable 
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diseases which have lifelong ramifications including diabetes 
mellitus, cardiovascular disease, chronic kidney disease, and chronic 
obstructive pulmonary disease.23–26 Moreover, in individuals 
with multiple morbidities, having periodontitis is associated with 
decreased survival.25 Thus, periodontitis is associated with overall 
poor health status and is a potential modifiable risk factor that can 
be targeted to potentially prevent further health decline or death.

Periodontitis Pathophysiology
Periodontitis has a multifactorial origin that begins with bacterial 
colonization of the gingival tissues. Initially, dental plaque develops, 
which consists of bacteria surrounding themselves within a 
protective biofilm that is resistant to antimicrobial agents.27,28 
The dental plaque is polymicrobial with Gram-positive, facultative 
bacteria such as Streptococcus and Actinomyces considered 
primary colonizers in an initially higher oxygen setting and  
Gram-negative, anaerobic bacteria such as Fusobacterium 
colonizing in more oxygen-depleted later stages.29–31 In fact, the 
shift between aerobic to anaerobic conditions is a hallmark of the 
progression from gingivitis to periodontitis.31,32 

Colonization with periodontopathic bacteria leads to a host 
response that is the main culprit behind the tissue destruction 
and local inflammatory reaction associated with periodontitis. 
The bacteria stimulate the innate immune response, which leads 
to inflammation and neutrophil migration.33 Pro-inflammatory 
cytokines and other inflammatory mediators, such as prostaglandins, 
tumor necrosis factor-alpha (TNF-alpha), and interleukin 1-beta (IL-1 
beta), are secreted.33 Subsequently, cytokines stimulate the adaptive 
immune response, which leads to differentiation of T and B cells 
along with activation of the receptor activator of nuclear factor-kB 
(RANK).34 While T and B cells lead to targeted tissue destruction, 
activation of RANK leads to osteoclast activation with resulting bone 
resorption and tooth loss.34 

Gingivitis, or inflammation of the gingivae, is the initial sign of 
inflammation and tissue destruction and is a reversible process. 
Histopathologically, gingivitis does not involve any loss of bone 
or periodontal tissue support structures.35,36 Bleeding, red, and/
or swollen gums can occur and are clinical signs and symptoms 
of the acute inflammatory injury associated with gingivitis. In this 
earlier phase of periodontal disease, dental hygiene is paramount 
to prevent the progression of gingivitis into periodontitis.35 If 
not reversed, the continued inflammatory injury and resulting 
tissue destruction of these events lead to periodontitis with the 
destruction of collagen fibers, loosening of teeth, bone resorption, 
and eventual loss of teeth.37 

Pregnancy and Risk of Periodontitis
Pregnant women are at higher risk for periodontal disease.15,16,38 
It has been well-documented since the 1960s that there exists an 
association between gingival inflammation and pregnancy.39–41 In 
women who had preexisting periodontal disease, pregnancy led to 
increased periodontal probing depths and worsening of bleeding 
gums which resolved after delivery.42 While the exact mechanism 
for how or why increased gingival inflammation occurs during 
pregnancy is not known, there are key studies elucidating a likely 
role of circulating hormones such as estrogen and progesterone. 
These hormones are commonly elevated in pregnancy due to 
production by the corpus luteum and subsequent placenta.43,44 
Both estrogen and progesterone receptors are located in the 
periodontium including the periodontal ligament, the structure 
that connects teeth to the underlying alveolar bone which becomes 

eroded during periodontitis, further supporting the role of these 
hormones on oral health.45,46

One proposed mechanism for pregnancy-associated gingivitis 
and periodontitis is alteration of the oral, and specifically 
periodontal, microbiota. One study found increased levels of 
Bacteroides intermedius in the second trimester of pregnancy which 
decreased postpartum, which is believed to be due to the increased 
levels of estrogen and progesterone acting as growth factors for 
this bacteria.42,47 Porphyromonas gingivalis and Prevotella intermedia, 
both periodontopathic bacteria leading to gingival inflammation, 
are also known to be associated with increased maternal hormone 
levels during pregnancy.48 Another study demonstrated that 
pregnant women had higher levels of the periodontogenic bacteria 
Campylobacter rectus in unstimulated salivary samples compared to 
their nonpregnant counterparts.49 These studies and others suggest 
a potential role of increased maternal hormone levels and alterations 
in the oral and periodontal microbiota including elevated levels of 
periodontopathic bacteria that increase the risk of periodontitis. 
Further studies are necessary to confirm these findings.

Alterations of the immune function of the gravida are 
another potential mechanism leading to an increased risk of 
gingival inflammation. During pregnancy, a state of relative 
immunosuppression occurs to prevent rejection of fetal tissues.50 
Resulting alterations in neutrophils and other innate and  
adaptive immune cells leads to an increased propensity for 
inflammation.51–54 Specifically, neutrophil chemotaxis and adherence 
are diminished during pregnancy.54 Moreover, pro-inflammatory 
cytokine production and secretion are increased during pregnancy; 
in vitro models demonstrate increased production of IL-6, IL-8, IL-1,  
TNF-alpha, and prostaglandin E2.55–59 However, some in vivo  
human studies have not found clear differences in these pro-
inflammatory cytokines comparing pregnant individuals to 
nonpregnant controls.60,61 Thus, in pregnancy, there appears to be 
a predisposition toward impairment in neutrophil function with 
possible alterations in levels of pro-inflammatory cytokine levels. 

Overall, there is evidence linking the increased levels of 
maternal estrogen and progesterone that occur during pregnancy 
with both worsening of preexisting gingival inflammation 
and further predisposition to new formation of gingivitis or 
periodontitis through likely alterations in the periodontal 
microbiota and the subsequent heightened, and potentially 
dysregulated, maternal inflammatory response. Thus, pregnant 
women represent a vulnerable population that are at higher 
inherent risk for the development of periodontitis with potential 
ramifications of the disease not only on the gravida but also the 
developing fetus(es).

Pe r I o d o n t I t I s A n d rI s k o f Pr e t e r m bI r t h
Periodontitis during pregnancy is associated with poor maternal 
and perinatal outcomes including gestational diabetes, 
preeclampsia, fetal growth restriction, low birth weight (LBW), 
preterm delivery, and perinatal mortality.62–66 Here, we will 
specifically evaluate the literature surrounding periodontitis and 
its association with one of these outcomes—preterm birth.

Periodontitis and Preterm Birth: A Review of the 
Medical Literature
In 1996, Offenbacher et al. first published a case–control study of 
124 pregnant or postpartum women evaluating rates of preterm 
low-birth-weight (PLBW) deliveries (defined as birth weight <2500 g 
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and one of the following: gestational age <37 weeks, preterm labor, 
or premature rupture of membranes). After multivariate logistic 
regression models were applied, periodontitis was significantly 
associated with PLBW delivery.67 Similar findings were later 
reported in other studies.68,69 For example, Jeffcoat et al. reported 
that pregnant women with generalized periodontal disease 
at 21–24  weeks of gestation had an increased risk for preterm 
delivery [adjusted odds ratio (AOR) 4.45, 95% confidence interval  
(CI) 2.16–9.18].68,69 However, studies have not consistently 
demonstrated this strong association with even one study from the 
United Kingdom (UK), suggesting potential prevention of preterm 
birth in women with periodontitis.70

While some studies, like the UK study, have contradictory 
findings, a significant body of evidence supports an association 
between periodontitis during pregnancy and preterm birth, PLBW, 
or LBW neonates.71–76 A meta-analysis published in 2016 evaluated 
published case–control studies evaluating pregnancy outcomes 
related to maternal periodontitis during pregnancy and reported 
a risk ratio of 1.61 (p <0.001) for preterm birth using data from 16 
studies.71 Furthermore, the risk ratio for having a neonate <2500 g at 
birth was 1.65 (p <0.001) and for PLBW was 3.44 (p <0.001).71 Another 
systematic review reported 62 studies suggesting periodontitis as 
a potential risk factor for preterm birth or LBW neonates.76 Thus, a 
large body of evidence supports maternal periodontitis as a likely 
modifiable risk factor for having preterm, PLBW, or LBW neonates.

While evidence supports the association between maternal 
periodontitis during pregnancy and preterm, LBW, or PLBW 
neonates, studies have subsequently assessed whether 
interventions during pregnancy to treat periodontitis can prevent 
these adverse outcomes. Two randomized controlled trials 
evaluated the impact of treating periodontitis with dental scaling 
and root planing on the prevention of preterm birth. Interestingly, 
neither trial demonstrated prevention of preterm birth, LBW, or 
fetal growth restriction with dental scaling and root planing of the 
mother in the second trimester.77,78 Other findings have similarly 
not found improvements in birth outcomes related to periodontal 
treatment during gestation.79 These results suggest that traditional 
methodologies for treating maternal periodontal disease during the 
second trimester of pregnancy do not likely have significant effects 
in the prevention of adverse offspring outcomes.

Biologic Plausibility and Potential Pathophysiological 
Explanation(s) for Association with Preterm Birth
While periodontitis appears to be associated with preterm birth, 
what are the possible pathophysiologic explanations? First, one 
must understand the current theories and hypotheses surrounding 
how preterm birth occurs prior to delving into how periodontitis 
may causally connect. While the mechanistic pathway for the 
development of preterm labor is not fully elucidated, one leading 
theory is the preterm parturition syndrome.80 This theory proposes 
that birth, irrespective of if occurring at term or preterm, has a 
common terminal pathway leading to parturition that includes 
uterine myometrial contractions, membrane activation with 
eventual rupture, and cervical ripening. However, in preterm 
labor, there are multiple insults of varying strength that may lead 
to premature activation of this terminal pathway. These triggers 
can range from infection, inflammation, cervical disorders, 
hormonal disorders, allergic phenomena, uterine overdistension, 
uteroplacental insufficiency, gene–environment interaction, and 
stress.80 Periodontitis likely leads to multiple insults leading to 

premature activation of the common terminal pathway including 
inflammation, infection, and potential alterations in the placental 
microbiota.

Preterm birth is well known to be associated with extrauterine 
maternal infections, such as malaria, pneumonia, and pyelonephritis, 
during pregnancy.81–92 Furthermore, intrauterine infections are well 
known to be associated with preterm birth. In fact, intrauterine 
infection is considered the only firm causal link with preterm birth 
with a known mechanistic pathophysiologic understanding.93–97 
For example, when systemic administration of microbial products 
is provided to a pregnant animal or intrauterine infection develops, 
preterm labor and resulting birth occur.95,98–107 Further supporting 
the role of maternal infection on the development of preterm birth, 
when antibiotics are administered for the treatment of intrauterine 
infections or asymptomatic bacteriuria, prevention of preterm 
birth can occur.108–110 Ultimately, the association with preterm birth 
is the strongest with intrauterine infection but also linked with 
extrauterine infections. Thus, the infectious process of periodontitis 
has strong potential for leading to premature birth.

Part of the innate immune system includes pattern recognition 
receptors such as toll-like receptors (TLRs). Interestingly, TLRs 
are found in the maternal genital tract including on the vagina, 
cervix, endometrium, and fallopian tubes.111 Ligation of TLRs 
leads to activation of downstream signaling cascade through 
nuclear factor-kB (NF-kB) and eventual production and secretion 
of cytokines and chemokines creating a pro-inflammatory milieu. 
In one mouse model of preterm birth, when TLR-4 contains a 
mutation that prevents proper signaling, these mice are less likely 
to deliver preterm when exposed to intrauterine inoculations of 
LPS compared to wild-type mice, supporting the mechanistic role 
of TLRs in signaling and activation of preterm birth.107,112 Moreover, 
certain TLRs such as TLR-2 are known to promote apoptosis of 
trophoblastic cells, specialized cells that form the placenta and 
ensure proper uteroplacental vascular supply. As a consequence, 
when TLR-2 is stimulated by a pathogen, promotion of trophoblast 
apoptosis can occur leading to the potential development of 
intrauterine growth restriction of the fetus, preeclampsia in the 
mother, and/or miscarriage, all findings that have been associated 
with maternal periodontitis during pregnancy.113–116 Thus, it is 
plausible that periodontitis activates the innate immune system 
and signaling cascade, which then likely plays an active role in the 
activation of preterm labor.

While infection itself is associated with the preterm parturition 
syndrome, maternal systemic and localized inflammation plays 
another potential mechanistic role in the early activation of 
the common terminal pathway. Specifically, pro-inflammatory 
cytokines, such as IL-1 and TNF-alpha, likely play a central role 
in the initiation of parturition. A body of evidence demonstrates 
that IL-1 causes uterine myometrial contractions. Systemic 
administration of IL-1 in animal models ultimately leads to preterm 
labor and birth.117 Another pro-inflammatory cytokine TNF-alpha 
promotes the production and release of matrix metalloproteases 
that instigate membrane rupture and cervical ripening.118–124 
Blockade of both IL-1 and TNF-alpha through knockout and 
receptor antagonist murine models demonstrates decreased rates 
of preterm labor and resulting preterm birth, strongly supporting 
the role of these two cytokines as significant mechanistic 
contributors to the development of preterm parturition.125–127 
Evidence supports other pro-inflammatory cytokines (IL-6, IL-16, 
and IL-18) in the pathogenesis of preterm parturition, many of 
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which have been found to be elevated in periodontitis.128–135 
While pro-inflammatory cytokines are associated with preterm 
birth, the diminished production of anti-inflammatory cytokines 
(IL-10) likely also plays a pivotal role. Anti-inflammatory cytokines 
are known to decrease in the placenta at term, further promoting 
a pro-inflammatory state near the time of labor.136 Additional 
evidence in animal models of infection demonstrates that when 
IL-10 is provided, less uterine myometrial contractility occurs along 
with less preterm birth.137–139 

Another potential mechanism for how periodontitis may lead 
to preterm birth is through alterations in the oral and placental 
microbiotas. The traditional and long-taught notion that the 
“womb,” including the placenta, amniotic cavity, and fetal tissues, 
is sterile is now uncertain.140 Aagaard et al. demonstrated a unique, 
low-biomass placental microbiome that harbors unique microbes 
commonly found in the human oral cavity (i.e., Prevotella tannerae, 
nonpathogenic Neisseria species, Bergeyella, and Fusobacterium), 
urinary tract (i.e., Escherichia coli), and vagina (i.e., Lactobacillus 
species, Ureaplasma species, and Streptococcus agalactiae).8,140 
These findings suggest that while ascending spread from the 
vagina may occur, hematogenous spread and seeding from the oral 
cavity likely play another key role. In fact, the placental microbiome 
demonstrates greatest similarity to the oral microbiome.140 Animal 
models in which food contaminated with periodontogenic 
pathogens such as Porphyromonas gingivalis is provided to 
pregnant animals demonstrate decreased fecundity and higher 
rates of inflammation within the placenta.9 Findings in humans 
further support the hematogenous spread from the oral cavity 
to the placenta. For instance, when bacteria are detected in the 
amniotic fluid of women who have preterm birth, the bacteria are 
more commonly associated with the oral cavity rather than other 
regions such as the vagina.141,142 Thus, dysbiosis of the placental 
microbiome due to hematogenous seeding of pathobionts from 
the oral cavity to the placenta may be an underlying etiology 
for the development of preterm labor that is associated with 
periodontitis.67,143–145 

Overall, periodontitis has several potential methods for the 
activation of the terminal pathway leading to preterm parturition 
including extrauterine infection, potential hematogenous seeding 
leading to intrauterine infection, dysbiosis of placental microbiome, 
and establishment of a pro-inflammatory state all associated with 
increased uterine activity, cervical ripening, and ultimately preterm 
birth. Further research is necessary to determine causal pathways 
by exploring these potential pathways leading to preterm birth in 
association with periodontitis.

Pe r I o d o n t I t I s,  In f l A m m At I o n, A n d 
Pot e n t I A l Adv e r s e ne u r o lo g I c 
co m P l I c At I o n s I n of f s P r I n g
While periodontitis is likely associated with an increased rate 
of prematurity, the subsequent maternal inflammation related 
to periodontitis can also have detrimental effects on offspring 
neurodevelopment. First, prematurity is associated with increased 
rates of neurodevelopmental delay compared to birth at term.146–157 
As periodontitis is associated with prematurity, this association is 
one reason for potential adverse long-term outcomes. Furthermore, 
fetal exposure to the resulting maternal inflammation, both local 
and systemic, due to periodontitis has the strong potential to injure 
a vulnerable, developing brain.

There exists a substantial body of evidence supporting the 
link between adverse neurologic outcomes with fetal exposure 
to maternal infection or its resulting inflammation.10–13,158,159 
Animal models across a large array of species (rat, mouse, sheep, 
rabbit, and piglet) consistently demonstrate a strong association 
between maternal inflammation and adverse neonatal neurologic 
outcomes. Specifically, increased numbers of macrophages and 
microglia within the white matter along with resulting white matter 
injury are well-known complications of maternal inflammation 
on the neonatal brain.12,13,158,160–162 These findings suggest a 
role for inflammation leading to microglial activation, potential 
proliferation, and subsequent white matter damage.

Further exploring the potential pathophysiology of fetal neural 
injury associated with maternal infection and inflammation, studies 
have elucidated differential effects within specific structures within 
the brain. For example, in response to inflammation and cytokine 
signaling (i.e., IL-6), there is a proliferation of primitive neural 
precursors within the subventricular zone.163 Cytokine signaling is 
associated with microglial activation and proliferation which are 
associated with neuronal injury.164 However, the role of microglia 
in the development of neuronal injury is still unknown and not fully 
defined. While microglial proliferation occurs in the subventricular 
zone, exposure to prenatal inflammation leads to decreased 
neurogenesis within the hippocampal subgranular zone.159,165,166 
The hippocampus is critically important in memory formation 
and learning. Diminished neurogenesis during fetal development 
within the hippocampus may be one potential etiology for future 
neurodevelopmental impairments.

While fetal exposure to maternal inflammation leads to 
changes in the developing fetal brain, the timing of exposure 
is also of paramount importance as the immature fetal brain 
undergoes critical windows of development in utero. Exposure to 
inflammation during these periods may potentiate adverse effects. 
It is well documented in the medical literature that certain maternal 
infections, such as Zika virus, toxoplasmosis, or cytomegalovirus, 
have increased risk of transmission or worse prognosis for 
offspring if infection occurs during certain time periods during 
gestation.167–169 Zika virus, for example, is known to preferentially 
lead to adverse offspring outcomes in a murine model if maternal 
infection occurs on embryonic day 8 as opposed to day 4 or 12.169 
Thus, critical windows of inherent vulnerability to infection and 
related inflammation occur in the developing fetus.

In times of maternal inflammation, the human placenta 
upregulates conversion of tryptophan to serotonin (5-HT), an 
important hormone in fetal neurogenesis and future neurocognitive 
disorders. Normally, placental-derived 5-HT reaches the fetal brain. 
In times of maternal inflammation, the subsequent increase in 
5-HT within the placenta leads to increased concentration within 
the fetal brain leading to significant potential for alterations in 
neurogenesis.170 

5-HT plays a critical role in neural crest stem cell survival, growth, 
migration, and proliferation as well as overall synaptogenesis.171–176 
With 5-HT being one of the first neurotransmitters to emerge 
during embryogenesis, and with 5-HT neurons proliferating from 
gestational weeks 5–10, any dysregulation of 5-HT signaling during 
this crucial developmental window has the potential to cause 
lasting long-term, detrimental effects on neurodevelopment. 
5-HT is a neuromodulator and intricately connected to future 
mood and anxiety disorders and even autism.177 Thus, maternal 
inflammation and subsequent derangements in neuromodulators 
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during the periods of neurogenesis and synaptogenesis during the 
fetal neurodevelopment may play a pivotal role in the eventual 
development of adverse neurodevelopmental outcomes.

Consistent with this theory, researchers evaluated 1,791,520 
children born over a 41-year period in Sweden and evaluated the 
association of hospitalization with any maternal infection, severe 
maternal infection, or a urinary tract infection with neuropsychiatric 
offspring outcomes including autism, depression, bipolar disorder, 
or psychosis.10 While no associations were found increasing the risk 
for bipolar disorder or psychosis among offspring, fetal exposure 
to maternal infection during hospitalization increased the risk 
for both autism [hazard ratio (HR) 1.79, 95% CI 1.34–2.40] and 
depression (HR 1.24, 95% CI 1.08–1.42).10 Thus, maternal infection 
and related inflammation have significant potential to lead to 
lifelong neurodevelopmental impairment in offspring.

Overall, periodontitis, an extrauterine maternal infection, is 
associated with both localized and systemic inflammation.178 With 
a substantial body of evidence linking maternal inflammation with 
poor neurodevelopmental outcomes of offspring, these findings 
provide biologic plausibility for adverse neurologic outcomes of 
offspring exposed to maternal periodontitis.

fu t u r e dI r e c t I o n s
While a plethora of evidence has demonstrated an association 
between periodontitis and preterm birth, there exist also some 
conflicting evidence that suggests no association may be 
present.70,179 However, research tends to focus on high-income 
settings rather than lower income settings where higher rates of 
preterm birth more commonly occur. In low- and middle-income 
countries, causes of preterm birth are oftentimes unknown. It 
is in these same settings that rates of periodontitis may exceed 
80–90% of pregnant or recently postpartum women. Therefore, 
research exploring the association of periodontitis, its treatment, 
and any association with preterm birth would be well suited in 
these settings where the magnitude of effect will lead to increased 
power for detection.

Furthermore, while randomized controlled trials have 
explored the effects of dental planing and root scaling on 
pregnant women with periodontitis during pregnancy compared 
to after pregnancy and did not find an effect on prevention of 
preterm birth, other prevention or treatment strategies targeting 
periodontitis need to similarly be vigorously explored. One 
possibility is the evaluation of fluoridated water sources. Studies 
have reported that exposure to fluoridated water sources provides 
protection against periodontal disease in adults.180–182 This low-
cost strategy has the potential for far-reaching effects within 
communities. In fact, in a murine model of preterm birth, pregnant 
mice that were exposed to low-dose fluoride supplementation 
postponed preterm birth, increased the rate of live births, and 
decreased perinatal brain injury in offspring.183 However, further 
studies are needed to determine any potential adverse effects, 
optimal dosing, use in varying geographical and cultural contexts, 
and other aspects prior to larger scale-up of this affordable and 
accessible option.

Another potential strategy is the evaluation of certain sugar 
alcohols within the polyol family (e.g., sorbitol, xylitol, or erythritol) 
that are known to prevent dental caries and periodontal disease. 
These polyols prevent periodontitis via multiple mechanisms that 
include disruption of periodontopathic bacterial energy production 

processes, reduction of adhesion of microorganisms to the teeth, 
and diminishing gingival inflammation via inhibiting LPS-induced 
inflammatory cytokine expression and signaling (TNF-alpha, IL-1 
beta, and NF-kB ).184–189 These sugar alcohols have the potential for 
preventing maternal periodontitis and further studies are needed 
on the effects on the maternal–neonatal dyad and associated 
outcomes.

co n c lu s I o n
Preterm birth is the leading cause of neonatal mortality, morbidity, 
and poor neurodevelopmental outcomes worldwide. Efforts 
seeking innovative methods to prevent preterm birth are critically 
important to attempt to prevent the 15 million preterm deliveries 
occurring every year globally.1,190 Substantial evidence links 
maternal periodontitis during pregnancy with adverse pregnancy 
outcomes including preterm birth, PLBW, and LBW offspring. With 
up to 90% of pregnant women suffering from poor oral hygiene in 
some resource-limited settings, periodontitis is likely an overlooked, 
important contributor to preterm birth. While no randomized 
controlled trials have reported the prevention of these adverse 
outcomes, these interventional studies have largely been limited 
to dental scaling and root planing. Further randomized controlled 
trials are needed evaluating other strategies to both treat and 
prevent periodontitis on offspring outcomes, preferentially in 
settings where periodontitis is highly prevalent. Moreover, fetal 
exposure to inflammation secondary to periodontitis and/or 
alterations in the developing neonatal microbiota are potentially 
modifiable risk factors for adverse neurodevelopmental outcomes 
in offspring. Therefore, these further studies should evaluate the 
impact not only on prevention of preterm, PLBW, or LBW neonates, 
but also on adverse long-term neurologic and neurodevelopmental 
outcomes of offspring.
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Ab b r e v I At I o n s
5-HT: Serotonin
IL: Interleukin
LBW: Low birth weight
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TNF-alpha: Tumor necrosis factor-alpha
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