Newborn

Register      Login

VOLUME 4 , ISSUE 1 ( January-March, 2025 ) > List of Articles

REVIEW ARTICLE

Perioperative Care after Surgical Correction of Congenital Heart Defects in Premature Infants

Saif Al-Ethawi, Noor IA-D Sadick, Saif A Hameed, Akram H Salih, Aimen B Ayad, Naif M Alsharari, Roberto M DiDonato, Alvaro Dendi, Mostafa MM Rizk, Georg M Schmölzer, Martin Antelo, Yahya Ethawi

Keywords : Cardiac output, Cardiopulmonary bypass, Colloid, Crystalloid, Multiorgan dysfunction, Neonate, Newborn, Preload, Systemic inflammatory response syndrome, Third space

Citation Information : Al-Ethawi S, Sadick NI, Hameed SA, Salih AH, Ayad AB, Alsharari NM, DiDonato RM, Dendi A, Rizk MM, Schmölzer GM, Antelo M, Ethawi Y. Perioperative Care after Surgical Correction of Congenital Heart Defects in Premature Infants. 2025; 4 (1):25-35.

DOI: 10.5005/jp-journals-11002-0122

License: CC BY-NC 4.0

Published Online: 25-03-2025

Copyright Statement:  Copyright © 2025; The Author(s).


Abstract

The outcomes of premature infants with congenital heart defects following surgical correction can be improved with carefully planned and evidence-based management during the postoperative period. Many pathophysiological changes related to surgery-related tissue disruption and cardiopulmonary bypass include sodium (Na)/water overload, systemic inflammatory response syndrome (SIRS), and ischemia/reperfusion in the heart and other major organs are seen during this period. Focused intensive care is needed with close monitoring of cardiac function, tissue oxygenation, hemostasis, pain control, and sedation. There are also some center-specific needs; all care-providers need to reach a consensus on evidence-based protocols for initiation, maintenance, and weaning from assisted ventilation, which can facilitate earlier extubation and prevent ventilation-related complications. Close monitoring of the cardiac rhythm/function and the hemodynamic status can reduce critical organ dysfunction and SIRS. Measurement of specified laboratory parameters, and imaging such as chest radiography, echocardiography, and structural/functional assessment of other critical organs can help in monitoring these patients for signs of recovery. Monitoring of the sleep−wakefulness cycle, ambient noise and light control, glycemic control, monitoring of electrolytes and other metabolic parameters, feedings, nutrition, and mobilization can promote the quality of recovery. Individualized antibiotic prophylaxis may be needed based on specific defects, type of surgery, severity of illness, prior data, bacterial flora in the center, and assessments by other specialists. Finally, a checklist with clearlydefined management steps for possible needs prior to and after discharge can promote patient safety.


PDF Share
  1. Anderson BR, Eckels VLB, Crook S, et al. The risks of being tiny: The added risk of low weight for neonates undergoing congenital heart surgery. Pediatr Cardiol 2020;41(8):1623−1631. DOI: 10.1007/s00246-020-02420-0.
  2. Chu PY, Li JS, Kosinski AS, et al. Congenital heart disease in premature infants 25-32 weeks’ gestational age. J Pediatr 2017;181:37e1−41e1. DOI: 10.1016/j.jpeds.2016.10.033.
  3. Hatachi T, Sofue T, Ito Y, et al. Antibiotic prophylaxis for open chest management after pediatric cardiac surgery. Pediatr Crit Care Med 2019;20(9):801−808. DOI: 10.1097/PCC.0000000000001995.
  4. Boehne M, Sasse M, Karch A, et al. Systemic inflammatory response syndrome after pediatric congenital heart surgery: Incidence, risk factors, and clinical outcome. J Card Surg 2017;32(2):116−125. DOI: 10.1111/jocs.12879.
  5. Tariq A, Bora V. Perioperative management of patients with congenital heart disease [Internet]. Treasure Island, FL: StatPearls Publishing; 2025.
  6. Kumar AB, Suneja M, Bayman EO, et al. Association between postoperative acute kidney injury and duration of cardiopulmonary bypass: A meta-analysis. J Cardiothorac Vasc Anesth 2012;26(1):64−69. DOI: 10.1053/j.jvca.2011.07.007.
  7. Nadeem R, Agarwal S, Jawed S, et al. Impact of cardiopulmonary bypass time on postoperative duration of mechanical ventilation in patients undergoing cardiovascular surgeries: A systemic review and regression of metadata. Cureus 2019;11(11):e6088. DOI: 10.7759/cureus.6088.
  8. Salis S, Mazzanti VV, Merli G, et al. Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery. J Cardiothorac Vasc Anesth 2008;22(6):814−822. DOI: 10.1053/j.jvca.2008.08.004.
  9. Wang L, Chen Q, Qiu YQ, et al. Effects of cardiopulmonary bypass with low-priming volume on clinical outcomes in children undergoing congenital heart disease surgery. J Cardiothorac Surg 2020;15(1):118. DOI: 10.1186/s13019-020-01151-w.
  10. Beukers AM, de Ruijter JAC, Loer SA, et al. Effects of crystalloid and colloid priming strategies for cardiopulmonary bypass on colloid oncotic pressure and haemostasis: A meta-analysis. Interact Cardiovasc Thorac Surg 2022;35(3):ivac127. DOI: 10.1093/icvts/ivac127.
  11. Grist G, Whittaker C, Merrigan K, et al. The correlation of fluid balance changes during cardiopulmonary bypass to mortality in pediatric and congenital heart surgery patients. J Extra Corpor Technol 2011;43(4):215−226. PMID: 22416601.
  12. Chandler HK, Kirsch R. Management of the low cardiac output syndrome following surgery for congenital heart disease. Curr Cardiol Rev 2016;12(2):107−111. DOI: 10.2174/1573403x12666151119164647.
  13. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur J Cardiothorac Surg 2002;21(2):232−244. DOI: 10.1016/s1010-7940(01)01099-5.
  14. Connolly D, McClowry S, Hayman L, et al. Posttraumatic stress disorder in children after cardiac surgery. J Pediatr 2004;144(4):480−484. DOI: 10.1016/j.jpeds.2003.12.048.
  15. De Hert S, Moerman A. Myocardial injury and protection related to cardiopulmonary bypass. Best Pract Res Clin Anaesthesiol 2015;29(2):137−149. DOI: 10.1016/j.bpa.2015.03.002.
  16. Allen BS. Pediatric myocardial protection: A cardioplegic strategy is the “solution.” Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2004;7:141−154. DOI: 10.1053/j.pcsu.2004.02.001.
  17. Gupta-Malhotra M, Kern JH, Flynn PA, et al. Cardiac troponin I after cardiopulmonary bypass in infants in comparison with older children. Cardiol Young 2013;23(3):431−435. DOI: 10.1017/S1047951112001163.
  18. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019;40(3):237−269. DOI: 10.1093/eurheartj/ehy462.
  19. Devereaux PJ, Lamy A, Chan MTV, et al. High-sensitivity troponin I after cardiac surgery and 30-day mortality. N Engl J Med 2022;386(9):827−836. DOI: 10.1056/NEJMoa2000803.
  20. de Somer F, Mulholland JW, Bryan MR, et al. O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury: Time for a goal-directed perfusion management? Crit Care 2011;15(4):R192. DOI: 10.1186/cc10349.
  21. Mallat J, Vallet B. Ratio of venous-to-arterial PCO(2) to arteriovenous oxygen content difference during regional ischemic or hypoxic hypoxia. Sci Rep 2021;11(1):10172. DOI: 10.1038/s41598-021-89703-5.
  22. Koo J, Baxter C, Kellogg K, et al. Guidelines for the general principles of postoperative care. The neonatal and pediatric cardiac surgery patient − What the pediatric critical care nurse needs to know. Raleigh, NC: The Pediatric Cardiac Intensive Care Society; 2022. Available from: https://pcics.org/wp-content/uploads/Guidelines-for-the-General-Principles-of-Postoperative-Care.pdf.
  23. Cholette JM, Willems A, Valentine SL, et al. Recommendations on RBC transfusion in infants and children with acquired and congenital heart disease from the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. Pediatr Crit Care Med 2018;19(9 Suppl 1):S137−S148. DOI: 10.1097/PCC.0000000000001603.
  24. Carra G, Flechet M, Jacobs A, et al. Postoperative cerebral oxygen saturation in children after congenital cardiac surgery and long-term total intelligence quotient: A prospective observational study. Crit Care Med 2021;49(6):967−976. DOI: 10.1097/CCM.0000000000004852.
  25. Salik I, Mehta B, Ambati S. Bidirectional Glenn procedure or hemi-Fontan [Internet]. 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563299/.
  26. Ritter S, Rudiger A, Maggiorini M. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: An observational study. Crit Care 2009;13(4):R133. DOI: 10.1186/cc7994.
  27. O’Neill R, Dempsey EM, Garvey AA, et al. Non-invasive cardiac output monitoring in neonates. Front Pediatr 2020;8:614585. DOI: 10.3389/fped.2020.614585.
  28. Kool M, Atkins DL, Voorde PV, et al. Focused echocardiography, end-tidal carbon dioxide, arterial blood pressure or near-infrared spectroscopy monitoring during paediatric cardiopulmonary resuscitation: A scoping review. Resusc Plus 2021;6:100109. DOI: 10.1016/j.resplu.2021.100109.
  29. Sharma V, Zheng H, Candilio L, et al. Defining peri-operative myocardial injury during cardiac surgery using high-sensitivity troponin T. J Clin Med 2023;12(13):4291. DOI: 10.3390/jcm12134291.
  30. Whyte HE, Jefferies AL, Canadian Paediatric Society, Fetus and Newborn Committee. The interfacility transport of critically ill newborns. Paediatr Child Health 2015;20(5):265−275. PMID: 26175564.
  31. Stephens RS, Whitman GJ. Postoperative critical care of the adult cardiac surgical patient. Part I: Routine postoperative care. Crit Care Med 2015;43(7):1477−1497. DOI: 10.1097/CCM.0000000000001059.
  32. Grant MC, Isada T, Ruzankin P, et al. Opioid-sparing cardiac anesthesia: Secondary analysis of an enhanced recovery program for cardiac surgery. Anesth Analg 2020;131(6):1852−1861. DOI: 10.1213/ANE.0000000000005152.
  33. Moghaddam JM, Barkhori A, Mirkheshti A, et al. The effect of pre-emptive dexmedetomidine on the incidence of post-thoracotomy pain syndrome in patients undergoing coronary artery bypass grafting. Anesth Pain Med 2016;6(3):e36344. DOI: 10.5812/aapm.36344.
  34. Ojha S, Abramson J, Dorling J. Sedation and analgesia from prolonged pain and stress during mechanical ventilation in preterm infants: Is dexmedetomidine an alternative to current practice? BMJ Paediatr Open 2022;6(1):e001460. DOI: 10.1136/bmjpo-2022-001460.
  35. Hsu YW, Cortinez LI, Robertson KM, et al. Dexmedetomidine pharmacodynamics: Part I: Crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 2004;101(5):1066−1076. DOI: 10.1097/00000542-200411000-00005.
  36. Lee SH, Choi YS, Hong GR, et al. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia 2015;70(9):1052−1059. DOI: 10.1111/anae.13084.
  37. Thoma BN, Li J, McDaniel CM, et al. Clinical and economic impact of substituting dexmedetomidine for propofol due to a US drug shortage: Examination of coronary artery bypass graft patients at an urban medical centre. Pharmacoeconomics 2014;32(2):149−157. DOI: 10.1007/s40273-013-0116-8.
  38. Likhvantsev VV, Landoni G, Grebenchikov OA, et al. Perioperative dexmedetomidine supplement decreases delirium incidence after adult cardiac surgery: A randomized, double-blind, controlled study. J Cardiothorac Vasc Anesth 2021;35(2):449−457. DOI: 10.1053/j.jvca.2020.02.035.
  39. Ng KT, Shubash CJ, Chong JS. The effect of dexmedetomidine on delirium and agitation in patients in intensive care: Systematic review and meta-analysis with trial sequential analysis. Anaesthesia 2019;74(3):380−392. DOI: 10.1111/anae.14472.
  40. Dagan R, Gorodischer R. Infections in hypothermic infants younger than 3 months old. Am J Dis Child 1984;138(5):483−485. DOI: 10.1001/archpedi.1984.02140430059015.
  41. Wu M, Liang Y, Dai Z, et al. Perioperative dexmedetomidine reduces delirium after cardiac surgery: A meta-analysis of randomized controlled trials. J Clin Anesth 2018;50:33−42. DOI: 10.1016/j.jclinane.2018.06.045.
  42. Duan X, Coburn M, Rossaint R, et al. Efficacy of perioperative dexmedetomidine on postoperative delirium: Systematic review and meta-analysis with trial sequential analysis of randomised controlled trials. Br J Anaesth 2018;121(2):384−397. DOI: 10.1016/j.bja.2018.04.046.
  43. Li X, Yang J, Nie XL, et al. Impact of dexmedetomidine on the incidence of delirium in elderly patients after cardiac surgery: A randomized controlled trial. PLoS One 2017;12(2):e0170757. DOI: 10.1371/journal.pone.0170757.
  44. Turan A, Duncan A, Leung S, et al. Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): A randomised placebo-controlled trial. Lancet 2020;396(10245):177−185. DOI: 10.1016/S0140-6736(20)30631-0.
  45. Singh A, Broad J, Brenna CTA, et al. The effects of dexmedetomidine on perioperative neurocognitive outcomes after noncardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Ann Surg Open 2022;3(1):e130. DOI: 10.1097/AS9.0000000000000130.
  46. Rigby-Jones AE, Nolan JA, Priston MJ, et al. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology 2002;97(6):1393−1400. DOI: 10.1097/00000542-200212000-00010.
  47. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth 1998;8(6):491−499. DOI: 10.1046/j.1460-9592.1998.00282.x.
  48. Sgro S, Morini F, Bozza P, et al. Intravenous propofol allows fast intubation in neonates and young infants undergoing major surgery. Front Pediatr 2019;7:321. DOI: 10.3389/fped.2019.00321.
  49. Smith-Parrish M, Chaves DPV, Taylor K, et al. Analgesia, sedation, and anesthesia for neonates with cardiac disease. Pediatrics 2022;150(Suppl 2):e2022056415K. DOI: 10.1542/peds.2022-056415K.
  50. Slooter AJ, Van De Leur RR, Zaal IJ. Delirium in critically ill patients. Handb Clin Neurol 2017;141:449−466. DOI: 10.1016/B978-0-444-63599-0.00025-9.
  51. Engelman DT, Ali WB, Williams JB, et al. Guidelines for perioperative care in cardiac surgery: Enhanced recovery after surgery society recommendations. JAMA Surg 2019;154(8):755−766. DOI: 10.1001/jamasurg.2019.1153.
  52. Noss C, Prusinkiewicz C, Nelson G, et al. Enhanced recovery for cardiac surgery. J Cardiothorac Vasc Anesth 2018;32(6):2760−2770. DOI: 10.1053/j.jvca.2018.01.045.
  53. Markham T, Wegner R, Hernandez N, et al. Assessment of a multimodal analgesia protocol to allow the implementation of enhanced recovery after cardiac surgery: Retrospective analysis of patient outcomes. J Clin Anesth 2019;54:76−80. DOI: 10.1016/j.jclinane.2018.10.035.
  54. Bignami E, Castella A, Pota V, et al. Perioperative pain management in cardiac surgery: A systematic review. Minerva Anestesiol 2018;84(4):488−503. DOI: 10.23736/S0375-9393.17.12142-5.
  55. Rafiq S, Steinbruchel DA, Wanscher MJ, et al. Multimodal analgesia versus traditional opiate based analgesia after cardiac surgery, a randomized controlled trial. J Cardiothorac Surg 2014;9:52. DOI: 10.1186/1749-8090-9-52.
  56. Li M, Zhang J, Gan TJ, et al. Enhanced recovery after surgery pathway for patients undergoing cardiac surgery: A randomized clinical trial. Eur J Cardiothorac Surg 2018;54(3):491−497. DOI: 10.1093/ejcts/ezy100.
  57. Syal K, Goma M, Dogra RK, et al. “Protective premedication”: A comparative study of acetaminophen, gabapentin and combination of acetaminophen with gabapentin for post-operative analgesia. J Anaesthesiol Clin Pharmacol 2010;26(4):531−536. PMID: 21547185.
  58. Keels E, Sethna N, Watterberg KL, et al. Prevention and management of procedural pain in the neonate: An update. Pediatrics 2016;137(2):e20154271. DOI: 10.1542/peds.2015-4271.
  59. Qiu R, Perrino AC Jr, Zurich H, et al. Effect of preoperative gabapentin and acetaminophen on opioid consumption in video-assisted thoracoscopic surgery: A retrospective study. Rom J Anaesth Intensive Care 2018;25(1):43−48. DOI: 10.21454/rjaic.7518.251.gab.
  60. Makkad B, Heinke TL, Sheriffdeen R, et al. Practice advisory for preoperative and intraoperative pain management of cardiac surgical patients: Part 2. Anesth Analg 2023;137(1):26−47. DOI: 10.1213/ANE.0000000000006506.
  61. Riddell RRP, Bucsea O, Shiff I, et al. Non-pharmacological management of infant and young child procedural pain. Cochrane Database Syst Rev 2023;6(6):CD006275. DOI: 10.1002/14651858.CD006275.pub4.
  62. Jellish WS. Opioid-sparing analgesia for sternotomy: Do surgical site continuous local anesthetics actually work? J Cardiothorac Vasc Anesth 2019;33(2):385−387. DOI: 10.1053/j.jvca.2018.10.004.
  63. Wick EC, Grant MC, Wu CL. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: A review. JAMA Surg 2017;152(7):691−697. DOI: 10.1001/jamasurg.2017.0898.
  64. Maesen B, Nijs J, Maessen J, et al. Post-operative atrial fibrillation: A maze of mechanisms. Europace 2012;14(2):159−174. DOI: 10.1093/europace/eur208.
  65. Williams JB, McConnell G, Allender JE, et al. One-year results from the first US-based enhanced recovery after cardiac surgery (ERAS Cardiac) program. J Thorac Cardiovasc Surg 2019;157(5):1881−1888. DOI: 10.1016/j.jtcvs.2018.10.164.
  66. Franck LS, Ridout D, Howard R, et al. A comparison of pain measures in newborn infants after cardiac surgery. Pain 2011;152(8):1758−1765. DOI: 10.1016/j.pain.2011.03.017.
  67. Hughes CG, Boncyk CS, Culley DJ, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative joint consensus statement on postoperative delirium prevention. Anesth Analg 2020;130(6):1572−1590. DOI: 10.1213/ANE.0000000000004641.
  68. Guimaraes-Pereira L, Farinha F, Azevedo L, et al. Persistent postoperative pain after cardiac surgery: Incidence, characterization, associated factors and its impact in quality of life. Eur J Pain 2016;20(9):1433−1442. DOI: 10.1002/ejp.866.
  69. McPherson C, Ortinau CM, Vesoulis Z. Practical approaches to sedation and analgesia in the newborn. J Perinatol 2021;41(3):383−395. DOI: 10.1038/s41372-020-00878-7.
  70. van Gulik L, Janssen LI, Ahlers SJ, et al. Risk factors for chronic thoracic pain after cardiac surgery via sternotomy. Eur J Cardiothorac Surg 2011;40(6):1309−1313. DOI: 10.1016/j.ejcts.2011.03.039.
  71. White PF, Kehlet H, Neal JM, et al. The role of the anesthesiologist in fast-track surgery: From multimodal analgesia to perioperative medical care. Anesth Analg 2007;104(6):1380−1396, table of contents. DOI: 10.1213/01.ane.0000263034.96885.e1.
  72. Brummett CM, Waljee JF, Goesling J, et al. New persistent opioid use after minor and major surgical procedures in US adults. JAMA Surg 2017;152(6):e170504. DOI: 10.1001/jamasurg.2017.0504.
  73. Ghanayem NS, Dearani JA, Welke KF, et al. Gastrointestinal complications associated with the treatment of patients with congenital cardiac disease: Consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease. Cardiol Young 2008;18(Suppl 2):240−244. DOI: 10.1017/S1047951108002989.
  74. Brown CR, Chen Z, Khurshan F, et al. Development of persistent opioid use after cardiac surgery. JAMA Cardiol 2020;5(8):889−896. DOI: 10.1001/jamacardio.2020.1445.
  75. Farmer SA, Schreiber M, Horvath KA. Slowing the opioid epidemic by controlling a source: Disabling the pump. JAMA Cardiol 2020;5(8):896−898. DOI: 10.1001/jamacardio.2020.1468.
  76. Clement KC, Canner JK, Whitman GJR, et al. New persistent opioid use after aortic and mitral valve surgery in commercially insured patients. Ann Thorac Surg 2020;110(3):829−835. DOI: 10.1016/j.athoracsur.2019.12.031.
  77. Anwar S, Cooper J, Rahman J, et al. Prolonged perioperative use of pregabalin and ketamine to prevent persistent pain after cardiac surgery. Anesthesiology 2019;131(1):119−131. DOI: 10.1097/ALN.0000000000002751.
  78. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev 2020;1(1):CD011219. DOI: 10.1002/14651858.CD011219.pub4.
  79. Zi-Yun X, Ruo-Lin Z, Yue-Wei X, et al. Efficacy and safety of oral acetaminophen for premature infants with patent ductus arteriosus: A meta-analysis. Front Pharmacol 2021;12:696417. DOI: 10.3389/fphar.2021.696417.
  80. Apfel CC, Turan A, Souza K, et al. Intravenous acetaminophen reduces postoperative nausea and vomiting: A systematic review and meta-analysis. Pain 2013;154(5):677−689. DOI: 10.1016/j.pain.2012.12.025.
  81. Cantais A, Schnell D, Vincent F, et al. Acetaminophen-induced changes in systemic blood pressure in critically ill patients: Results of a multicenter cohort study. Crit Care Med 2016;44(12):2192−2198. DOI: 10.1097/CCM.0000000000001954.
  82. Jelacic S, Bollag L, Bowdle A, et al. Intravenous acetaminophen as an adjunct analgesic in cardiac surgery reduces opioid consumption but not opioid-related adverse effects: A randomized controlled trial. J Cardiothorac Vasc Anesth 2016;30(4):997−1004. DOI: 10.1053/j.jvca.2016.02.010.
  83. Subramaniam B, Shankar P, Shaefi S, et al. Effect of intravenous acetaminophen vs placebo combined with propofol or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: The DEXACET randomized clinical trial. JAMA 2019;321(7):686−696. DOI: 10.1001/jama.2019.0234.
  84. FDA. FDA Drug Safety Communication: FDA strengthens warning that non-aspirin nonsteroidal anti-inflammatory drugs (NSAIDs) can cause heart attacks or strokes [Internet]. Silver Spring, MD: Food and Drug Administration; 2015. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-strengthens-warning-non-aspirin-nonsteroidal-anti-inflammatory.
  85. Oliveri L, Jerzewski K, Kulik A. Black box warning: Is ketorolac safe for use after cardiac surgery? J Cardiothorac Vasc Anesth 2014;28(2):274−279. DOI: 10.1053/j.jvca.2013.07.014.
  86. Lee A, Cooper MC, Craig JC, et al. Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev 2004;2:CD002765. DOI: 10.1002/14651858.CD002765.pub2.
  87. Nussmeier NA, Whelton AA, Brown MT, et al. Safety and efficacy of the cyclooxygenase-2 inhibitors parecoxib and valdecoxib after noncardiac surgery. Anesthesiology 2006;104(3):518−526. DOI: 10.1097/00000542-200603000-00020.
  88. Nussmeier NA, Whelton AA, Brown MT, et al. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 2005;352(11):1081−1091. DOI: 10.1056/NEJMoa050330.
  89. Joshi GP, Schug SA, Kehlet H. Procedure-specific pain management and outcome strategies. Best Pract Res Clin Anaesthesiol 2014;28(2):191−201. DOI: 10.1016/j.bpa.2014.03.005.
  90. Nesher N, Serovian I, Marouani N, et al. Ketamine spares morphine consumption after transthoracic lung and heart surgery without adverse hemodynamic effects. Pharmacol Res 2008;58(1):38−44. DOI: 10.1016/j.phrs.2008.06.003.
  91. Bainbridge D, Cheng DC, Martin JE, et al. NSAID − Analgesia, pain control and morbidity in cardiothoracic surgery. Can J Anaesth 2006;53(1):46−59. DOI: 10.1007/BF03021527.
  92. Kulik A, Bykov K, Choudhry NK, et al. Non-steroidal anti-inflammatory drug administration after coronary artery bypass surgery: Utilization persists despite the boxed warning. Pharmacoepidemiol Drug Saf 2015;24(6):647−653. DOI: 10.1002/pds.3788.
  93. Kulik A, Ruel M, Bourke ME, et al. Postoperative naproxen after coronary artery bypass surgery: A double-blind randomized controlled trial. Eur J Cardiothorac Surg 2004;26(4):694−700. DOI: 10.1016/j.ejcts.2004.07.004.
  94. Efremov SM, Kuzkov VV, Fot EV, et al. Lung ultrasonography and cardiac surgery: A narrative review. J Cardiothorac Vasc Anesth 2020;34(11):3113−3124. DOI: 10.1053/j.jvca.2020.01.032.
  95. Mathis MR, Duggal NM, Likosky DS, et al. Intraoperative mechanical ventilation and postoperative pulmonary complications after cardiac surgery. Anesthesiology 2019;131(5):1046−1062. DOI: 10.1097/ALN.0000000000002909.
  96. Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: International expert panel-based consensus recommendations. Br J Anaesth 2019;123(6):898−913. DOI: 10.1016/j.bja.2019.08.017.
  97. Flynn BC, He J, Richey M, et al. Early extubation without increased adverse events in high-risk cardiac surgical patients. Ann Thorac Surg 2019;107(2):453−459. DOI: 10.1016/j.athoracsur.2018.09.034.
  98. Krebs ED, Hawkins RB, Mehaffey JH, et al. Is routine extubation overnight safe in cardiac surgery patients? J Thorac Cardiovasc Surg 2019;157(4):1533e2−1542e2. DOI: 10.1016/j.jtcvs.2018.08.125.
  99. Wong WT, Lai VK, Chee YE, et al. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst Rev 2016;9(9):CD003587. DOI: 10.1002/14651858.CD003587.pub3.
  100. Traeger L, Hall TD, Bedrikovetski S, et al. Effect of neuromuscular reversal with neostigmine/glycopyrrolate versus sugammadex on postoperative ileus following colorectal surgery. Tech Coloproctol 2023;27(3):217−226. DOI: 10.1007/s10151-022-02695-w.
  101. Shields M, Giovannelli M, Mirakhur RK, et al. Org 25969 (sugammadex), a selective relaxant binding agent for antagonism of prolonged rocuronium-induced neuromuscular block. Br J Anaesth 2006;96(1):36−43. DOI: 10.1093/bja/aei314.
  102. Fisher DM, Cronnelly R, Miller RD, et al. The neuromuscular pharmacology of neostigmine in infants and children. Anesthesiology 1983;59(3):220−225. DOI: 10.1097/00000542-198309000-00010.
  103. Agakidou E, Chatziioannidis I, Kontou A, et al. An update on pharmacologic management of neonatal hypotension: When, why, and which medication. Children (Basel) 2024;11(4):490. DOI: 10.3390/children11040490.
  104. Moran HRM, Maguire D, Maguire D, et al. Association of earlier extubation and postoperative delirium after coronary artery bypass grafting. J Thorac Cardiovasc Surg 2020;159(1):182e7−190e7. DOI: 10.1016/j.jtcvs.2019.03.047.
  105. Sun YT, Wu W, Yao YT. The association of vasoactive-inotropic score and surgical patients’ outcomes: A systematic review and meta-analysis. Syst Rev 2024;13(1):20. DOI: 10.1186/s13643-023-02403-1.
  106. Vourc'h M, Nicolet J, Volteau C, et al. High-flow therapy by nasal cannulae versus high-flow face mask in severe hypoxemia after cardiac surgery: A single-center randomized controlled study − The HEART FLOW Study. J Cardiothorac Vasc Anesth 2020;34(1):157−165. DOI: 10.1053/j.jvca.2019.05.039.
  107. Lomivorotov VV, Efremov SM, Kirov MY, et al. Low-cardiac-output syndrome after cardiac surgery. J Cardiothorac Vasc Anesth 2017;31(1):291−308. DOI: 10.1053/j.jvca.2016.05.029.
  108. Stephan F, Barrucand B, Petit P, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: A randomized clinical trial. JAMA 2015;313(23):2331−2339. DOI: 10.1001/jama.2015.5213.
  109. Panchal AR, Bartos JA, Cabanas JG, et al. Part 3: Adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020;142(16 suppl 2):S366−S468. DOI: 10.1161/CIR.0000000000000916.
  110. King CR, Fritz BA, Escallier K, et al. Association between preoperative obstructive sleep apnea and preoperative positive airway pressure with postoperative intensive care unit delirium. JAMA Netw Open 2020;3(4):e203125. DOI: 10.1001/jamanetworkopen.2020.3125.
  111. Brand J, McDonald A, Dunning J. Management of cardiac arrest following cardiac surgery. BJA Educ 2018;18(1):16−22. DOI: 10.1016/j.bjae.2017.11.002.
  112. Nomura Y, Nakano M, Bush B, et al. Observational study examining the association of baseline frailty and postcardiac surgery delirium and cognitive change. Anesth Analg 2019;129(2):507−514. DOI: 10.1213/ANE.0000000000003967.
  113. Anthi A, Tzelepis GE, Alivizatos P, et al. Unexpected cardiac arrest after cardiac surgery: Incidence, predisposing causes, and outcome of open chest cardiopulmonary resuscitation. Chest 1998;113(1):15−19. DOI: 10.1378/chest.113.1.15.
  114. Berian JR, Zhou L, Russell MM, et al. Postoperative delirium as a target for surgical quality improvement. Ann Surg 2018;268(1):93−99. DOI: 10.1097/SLA.0000000000002436.
  115. Cui Y, Li G, Cao R, et al. The effect of perioperative anesthetics for prevention of postoperative delirium on general anesthesia: A network meta-analysis. J Clin Anesth 2020;59:89−98. DOI: 10.1016/j.jclinane.2019.06.028.
  116. Kashani HH, Mosienko L, Grocott BB, et al. Postcardiac surgery acute stroke therapies: A systematic review. J Cardiothorac Vasc Anesth 2020;34(9):2349−2354. DOI: 10.1053/j.jvca.2020.03.041.
  117. Lazar HL, McDonnell M, Chipkin SR, et al. The Society of Thoracic Surgeons practice guideline series: Blood glucose management during adult cardiac surgery. Ann Thorac Surg 2009;87(2):663−669. DOI: 10.1016/j.athoracsur.2008.11.011.
  118. Lazar HL. How important is glycemic control during coronary artery bypass? Adv Surg 2012;46:219−235. DOI: 10.1016/j.yasu.2012.03.007.
  119. Golden SH, Peart-Vigilance C, Kao WH, et al. Perioperative glycemic control and the risk of infectious complications in a cohort of adults with diabetes. Diabetes Care 1999;22(9):1408−1414. DOI: 10.2337/diacare.22.9.1408.
  120. Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009;360(13):1283−1297. DOI: 10.1056/NEJMoa0810625.
  121. Jacob P, Gupta P, Shiju S, et al. Multidisciplinary, early mobility approach to enhance functional independence in patients admitted to a cardiothoracic intensive care unit: A quality improvement programme. BMJ Open Qual 2021;10(3):e001256. DOI: 10.1136/bmjoq-2020-001256.
  122. Compher C, Bingham AL, McCall M, et al. Guidelines for the provision of nutrition support therapy in the adult critically ill patient: The American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr 2022;46(1):12−41. DOI: 10.1002/jpen.2267.
  123. Parry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem Physiol Med 2015;4:16. DOI: 10.1186/s13728-015-0036-7.
  124. Gould MK, Garcia DA, Wren SM, et al. Prevention of VTE in nonorthopedic surgical patients: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141(2 Suppl):e227S. DOI: 10.1378/chest.11-2297.
  125. Dunning J, Versteegh M, Fabbri A, et al. Guideline on antiplatelet and anticoagulation management in cardiac surgery. Eur J Cardiothorac Surg 2008;34(1):73−92. DOI: 10.1016/j.ejcts.2008.02.024.
  126. Edwards FH, Engelman RM, Houck P, et al. The Society of Thoracic Surgeons Practice Guideline Series: Antibiotic prophylaxis in cardiac surgery, part I: Duration. Ann Thorac Surg 2006;81(1):397−404. DOI: 10.1016/j.athoracsur.2005.06.034.
  127. Gaynor JW, Stopp C, Wypij D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015;135(5):816−825. DOI: 10.1542/peds.2014-3825.
  128. Karapetyan K, Mei S, Choudhury A, et al. Overview of antibiotic prophylaxis in orthopaedic and cardiac procedures. Orthop Nurs 2023;42(5):312−316. DOI: 10.1097/NOR.0000000000000972.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.