Newborn

Register      Login

VOLUME 4 , ISSUE 1 ( January-March, 2025 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of Neonatal Infections in the NICU over a 10-year Period

Pooja Shah, Sabrina K Malik, Juhi Motiani, Tara Lozy, Sejal Bhavsar

Keywords : Antibiotic use practices, Infection, Neonate, Neonatal intensive care unit, Newborn, Organism susceptibility

Citation Information : Shah P, Malik SK, Motiani J, Lozy T, Bhavsar S. Evaluation of Neonatal Infections in the NICU over a 10-year Period. 2025; 4 (1):6-12.

DOI: 10.5005/jp-journals-11002-0115

License: CC BY-NC 4.0

Published Online: 25-03-2025

Copyright Statement:  Copyright © 2025; The Author(s).


Abstract

Background: Bacterial infections are a leading cause of morbidity and mortality in premature and critically ill neonates. In this quality-improvement (QI) study, we sought to characterize the bacterial infections in our neonatal intensive care unit (NICU). Aim: Our aim was to determine whether the spectrum of bacteria causing neonatal sepsis and their antibiotic susceptibility was changing over time. This information is essential for optimizing the empirical antibiotic treatment protocols needed for treating suspected sepsis prior to identification of the bacterial isolates. Materials and methods: We retrospectively reviewed the medical records of all infants treated for culture-positive sepsis in our NICU over the last 10 years. Results: We identified 151 culture-positive bacterial sepsis events in 125 infants. The organisms isolated each year largely remained similar throughout the study. Early-onset sepsis (EOS) was caused most frequently by Escherichia coli (E. coli) and group B Streptococcus, whereas the leading causes of late-onset sepsis (LOS) were coagulase-negative Staphylococcus (CoNS) and methicillin-sensitive Staphylococcus aureus. We are also seeing a trend for increasing Klebsiella isolates since 2015. Conclusion: There was no significant shift in organisms causing neonatal infections during the last 10-years. We need to carefully follow the number of Klebsiella spp. isolates and also record the antibiotic sensitivity profiles of E. coli over time. Clinical significance: In our NICU, the bacterial isolates and antibiotic susceptibility patterns have not shown major changes in recent years. Hence, the empirical antibiotic protocols for suspected sepsis do not need to be revised right now. We do need to monitor the number and antibiotic sensitivity of certain Gram-negative bacterial isolates. Our antibiotic protocols will need fine adjustment to cover the most frequently isolated bacteria for good outcomes, but also to avoid overuse and secondary resistance.


PDF Share
  1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392(10159):1789–1858. DOI: 10.1016/S0140-6736(18)32279-7.
  2. Coggins SA, Glaser K. Updates in late-onset sepsis: Risk assessment, therapy, and outcomes. Neoreviews. 2022;23(11):738–755. DOI: 10.1542/neo.23-10-e738.
  3. Schrag SJ, Farley MM, Petit S, et al. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics 2016;138(6):e20162013. DOI: 10.1542/peds.2016-2013.
  4. Dong Y, Speer CP. Late-onset neonatal sepsis: Recent developments. Arch Dis Child Fetal Neonatal Ed 2015;100(3):F257–F263. DOI: 10.1136/archdischild-2014-306213.
  5. Sgro M, Kobylianskii A, Yudin MH, et al. Population-based study of early-onset neonatal sepsis in Canada. Paediatr Child Health. 2019 May;24(2):e66-e73. PMID: 30996609. doi: 10.1093/pch/pxy018.
  6. ACOG. Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 797. Obstet Gynecol 2020;135(2):e51–e72. DOI: 10.1097/AOG.0000000000003668.
  7. Bizzarro MJ, Raskind C, Baltimore RS, et al. Seventy-five years of neonatal sepsis at Yale: 1928–2003. Pediatrics 2005;116(3):595–602. DOI: 10.1542/peds.2005-0552.
  8. Puopolo KM, Benitz WE, Zaoutis TE. Committee on Fetus, Newborn, Committee on Infectious Diseases. Management of neonates born at ≥35 0/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics 2018;142(6):e20182894. DOI: 10.1542/peds.2018-2894.
  9. Puopolo KM, Benitz WE, Zaoutis TE. Committee on Fetus, Newborn, Committee on Infectious Diseases. Management of neonates born at
  10. Flannery DD, Chiotos K, Gerber JS, et al. Neonatal multidrug-resistant gram-negative infection: Epidemiology, mechanisms of resistance, and management. Pediatr Res 2022;91(2):380–391. DOI: 10.1038/s41390-021-01745-7.
  11. Kuster SP, Ruef C, Bollinger AK, et al. Correlation between case mix index and antibiotic use in hospitals. J Antimicrob Chemother 2008;62(4):837–842. DOI: 10.1093/jac/dkn275.
  12. Mendez CM, Harrington DW, Christenson P, et al. Impact of hospital variables on case mix index as a marker of disease severity. Popul Health Manag 2014;17(1):28–34. DOI: 10.1089/pop.2013.0002.
  13. MacDougall C, Polk RE. Antimicrobial stewardship programs in health care systems. Clin Microbiol Rev 2005;18(4):638–656. DOI: 10.1128/CMR.18.4.638-656.2005.
  14. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: A clinical update. Clin Microbiol Rev 2005;18(4):657–686. DOI: 10.1128/CMR.18.4.657-686.2005.
  15. Mukherjee S, Mitra S, Dutta S, et al. Neonatal sepsis: The impact of carbapenem-resistant and hypervirulent klebsiella pneumoniae. Front Med (Lausanne) 2021;8:634349. DOI: 10.3389/fmed.2021.634349.
  16. Zhou P, Zhou Y, Liu B, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere 2020;5(1). DOI: 10.1128/mSphere.00984-19.
  17. Friedman S, Shah V, Ohlsson A, et al. Neonatal escherichia coli infections: Concerns regarding resistance to current therapy. Acta Paediatr 2000;89(6):686–689. DOI: 10.1080/080352500750044007.
  18. Chu A, Hageman JR, Schreiber M, et al. Antimicrobial therapy and late onset sepsis neoreviews. 2012;13(2):e94–e102. DOI: 10.1542/neo.13-2-e94.
  19. Stoll BJ, Puopolo KM, Hansen NI, et al. Early-onset neonatal sepsis 2015 to 2017, the Rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr 2020;174(7):e200593. DOI: 10.1001/jamapediatrics.2020.0593.
  20. Verani JR, McGee L, Schrag SJ. Division of Bacterial Diseases NCfI, Respiratory Diseases CfDC, Prevention. Prevention of perinatal group B streptococcal disease–Revised guidelines from CDC, 2010. MMWR Recomm Rep 2010;19;59(RR-10):1–36. PMID: 21088663.
  21. Sands K, Carvalho MJ, Portal E, et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol 2021;6(4):512–523. DOI: 10.1038/s41564-021-00870-7.
  22. Flannery DD, Edwards EM, Coggins SA, et al. Late-onset sepsis among very preterm infants. Pediatrics 2022;150(6):e2022058813. DOI: 10.1542/peds.2022-058813.
  23. Russell N, Barday M, Okomo U, et al. Early-versus late-onset sepsis in neonates - time to shift the paradigm? Clin Microbiol Infect 2024;30(1):38–43. DOI: 10.1016/j.cmi.2023.07.023.
  24. Domaracki BE, Evans AM, Venezia RA. Vancomycin and oxacillin synergy for methicillin-resistant staphylococci. Antimicrob Agents Chemother 2000;44(5):1394–1396. DOI: 10.1128/AAC.44.5.1394-1396.2000.
  25. Magers J, Prusakov P, Speaks S, et al. Safety and efficacy of nafcillin for empiric therapy of late-onset sepsis in the NICU. Pediatrics 2022;149(5):e2021052360. DOI: 10.1542/peds.2021-052360.
  26. Dao TH, Alsallaq R, Parsons JB, et al. Vancomycin Heteroresistance and clinical outcomes in bloodstream infections caused by coagulase-negative staphylococci. Antimicrob Agents Chemother 2020;64(11). DOI: 10.1128/AAC.00944-20.
  27. Lohr KN. Rating the strength of scientific evidence: relevance for quality improvement programs. Int J Qual Health Care 2004;16(1):9–18. DOI: 10.1093/intqhc/mzh005.
  28. Vassar M, Holzmann M. The retrospective chart review: Important methodological considerations. J Educ Eval Health Prof 2013;10:12. DOI: 10.3352/jeehp.2013.10.12.
  29. Goldstein ND, Jenness SM, Tuttle D, et al. Evaluating a neonatal intensive care unit MRSA surveillance programme using agent-based network modelling. J Hosp Infect 2018;100(3):337–343. DOI: 10.1016/j.jhin.2018.05.002.
  30. Cho HJ, Cho HK. Central line-associated bloodstream infections in neonates. Korean J Pediatr 2019;62(3):79–84. DOI: 10.3345/kjp.2018.07003.
  31. Lepelletier D, Maillard JY, Pozzetto B, et al. Povidone iodine: Properties, mechanisms of action, and role in infection control and staphylococcus aureus decolonization. Antimicrob Agents Chemother 2020;64(9):e00682–20. DOI: 10.1128/AAC.00682-20.
  32. Silvestri DL, McEnery-Stonelake M. Chlorhexidine: Uses and adverse reactions. Dermatitis 2013;24(3):112–118. DOI: 10.1097/DER.0b013e3182905561.
  33. Bagheri I, Bahare F, Dadgari A, et al. A literature review of selection of appropriate antiseptics when inserting intravenous catheters in premature infants: The challenge in neonatal intensive care unit. J Clin Neonatol 2020;9(3):162–167. DOI: 10.4103/jcn.JCN_135_19.
  34. Kucuker H, Cakir SC, Koksal N, et al. A comparison of chlorhexidine and povidone-iodine solutions in neonatal intensive care units. Pediatr Int 2023;65(1):e15552. DOI: 10.1111/ped.15552.
  35. Song JW, Chung KC. Observational studies: Cohort and case-control studies. Plast Reconstr Surg 2010;126(6):2234–2242. DOI: 10.1097/PRS.0b013e3181f44abc.
  36. GNS. Global Newborn Society Clarksville, Maryland, USA: Global Newborn Society; 2022. [online] Available from: https://www.globalnewbornsociety.org/. [Last accessed February, 2025].
  37. Fitzgerald DC, Simpson AN, Baker RA, et al. Determinants of hospital variability in perioperative red blood cell transfusions during coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 2022;163(3):1015–1024 e1. DOI: 10.1016/j.jtcvs.2020.04.141.
  38. Bokulich NA, Mills DA, Underwood MA. Surface microbes in the neonatal intensive care unit: Changes with routine cleaning and over time. J Clin Microbiol 2013;51(8):2617–2624. DOI: 10.1128/JCM.00898-13.
  39. Cizman M, Plankar Srovin T. Antibiotic consumption and resistance of gram-negative pathogens (collateral damage). GMS Infect Dis 2018;6:Doc05. DOI: 10.3205/id000040.
  40. Jon Widding Fjalstad, Eirin Esaiassen, Lene Kristine Juvet, John N van den Anker, Claus Klingenberg, Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: A systematic review. Journal of Antimicrobial Chemotherapy 2018;73(3):569–580. DOI: 10.1093/jac/dkx426.
  41. Kaiser Permanente Research. Neonatal early-onset sepsis calculator. California: United States; 2025. [online] Available from: https://neonatalsepsiscalculator.kaiserpermanente.org/. [Last accessed February, 2025].
  42. Efthimiou O, Hoogland J, Debray TPA, et al. Measuring the performance of prediction models to personalize treatment choice. Stat Med 2023;42(8):1188–1206. DOI: 10.1002/sim.9665.
  43. Delgado-Rodriguez M. Systematic reviews of meta-analyses: Applications and limitations. J Epidemiol Community Health 2006;60(2):90–92. DOI: 10.1136/jech.2005.035253.
  44. Gidh-Jain M, Parke T, Konig F, et al. Developing generic templates to shape the future for conducting integrated research platform trials. Trials 2024;25(1):204. DOI: 10.1186/s13063-024-08034-8.
  45. Indrayan A, Mishra A. The importance of small samples in medical research. J Postgrad Med 2021;67(4):219–223. DOI: 10.4103/jpgm.JPGM_230_21.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.