UNESCO. 2025 International Day of Education New York, USA: United Nations; 2025 [Available from: https://www.un.org/en/observances/education-day.
UNESCO. UNESCO: Building Peace through Education, Science, Culture, Communication and Information. Paris, France: United Nations Educational, Scientific and Cultural Organization; 2025 [Available from: https://www.unesco.org/en.
IBM. What is artificial intelligence (AI)? New York: IBM (International Business Machines Corporation); 2025 [Available from: https://www.ibm.com/think/topics/artificial-intelligence.
Shiferaw KB, Roloff M, Balaur I, Welter D, Waltemath D, Zeleke AA. Guidelines and standard frameworks for artificial intelligence in medicine: a systematic review. JAMIA Open. 2025;8(1):ooae155. PMID: 39759773. doi: 10.1093/jamiaopen/ooae155.
Gaur K, Jagtap MM. Role of artificial intelligence and machine learning in prediction, diagnosis, and prognosis of cancer. Cureus. 2022;14(11):e31008. PMID: 36475188. doi: 10.7759/cureus.31008.
Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: Systematic literature review. JMIR Med Inform. 2020;8(7):e18599. PMID: 32706688. doi: 10.2196/18599.
Mittermaier M, Raza MM, Kvedar JC. Bias in AI-based models for medical applications: challenges and mitigation strategies. NPJ Digit Med. 2023;6(1):113. PMID: 37311802. doi: 10.1038/s41746-023-00858-z.
Evans H, Snead D. Understanding the errors made by artificial intelligence algorithms in histopathology in terms of patient impact. NPJ Digit Med. 2024;7(1):89. PMID: 38600151. doi: 10.1038/s41746-024-01093-w.
Li G, Li C, Wang C, Wang Z. Suboptimal capability of individual machine learning algorithms in modeling small-scale imbalanced clinical data of local hospital. PLoS One. 2024;19(2):e0298328. PMID: 38394317. doi: 10.1371/journal.pone.0298328.
Nazer LH, Zatarah R, Waldrip S, Ke JXC, Moukheiber M, Khanna AK, et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health. 2023;2(6):e0000278. PMID: 37347721. doi: 10.1371/journal.pdig.0000278.
Cross JL, Choma MA, Onofrey JA. Bias in medical AI: Implications for clinical decision-making. PLOS Digit Health. 2024;3(11):e0000651. PMID: 39509461. doi: 10.1371/journal.pdig.0000651.
Yu L, Li Y. Artificial intelligence decision-making transparency and employees’ trust: The parallel multiple mediating effect of effectiveness and discomfort. Behav Sci (Basel). 2022;12(5). PMID: 35621424. doi: 10.3390/bs12050127.
Haider SA, Borna S, Gomez-Cabello CA, Pressman SM, Haider CR, Forte AJ. The algorithmic divide: A systematic review on AI-driven racial disparities in healthcare. J Racial Ethn Health Disparities. 2024. PMID: 39695057. doi: 10.1007/s40615-024-02237-0.
Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021;22(1):122. PMID: 34525993. doi: 10.1186/s12910-021-00687-3.
Li J. Security implications of AI chatbots in health care. J Med Internet Res. 2023;25:e47551. PMID: 38015597. doi: 10.2196/47551.
Price WN, 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37–43. PMID: 30617331. doi: 10.1038/s41591-018-0272-7.
Ahmad SF, Han H, Alam MM, Rehmat MK, Irshad M, Arrano-Munoz M, et al. Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanit Soc Sci Commun. 2023;10(1):311. PMID: 37325188. doi: 10.1057/s41599-023-01787-8.
Doshi AR, Hauser OP. Generative AI enhances individual creativity but reduces the collective diversity of novel content. Sci Adv. 2024;10(28):eadn5290. PMID: 38996021. doi: 10.1126/sciadv.adn5290.
Koivisto M, Grassini S. Best humans still outperform artificial intelligence in a creative divergent thinking task. Sci Rep. 2023;13(1):13601. PMID: 37709769. doi: 10.1038/s41598-023-40858-3.
Wang L, Wang J, Wang M, Li Y, Liang Y, Xu D. Using Internet search engines to obtain medical information: a comparative study. J Med Internet Res. 2012;14(3):e74. PMID: 22672889. doi: 10.2196/jmir.1943.
WEF. Top 9 ethical issues in artificial intelligence. Cologny, Switzerland: World Economic Forum; 2016 [Available from: https://www.weforum.org/stories/2016/10/top-10-ethical-issues-in-artificial-intelligence/.
Evans RS. Electronic health records: Then, now, and in the future. Yearb Med Inform. 2016;Suppl 1(Suppl 1):S48–61. PMID: 27199197. doi: 10.15265/IYS-2016-s006.
Lee C, Britto S, Diwan K. Evaluating the impact of artificial intelligence (ai) on clinical documentation efficiency and accuracy across clinical settings: A scoping review. Cureus. 2024;16(11):e73994. PMID: 39703286. doi: 10.7759/cureus.73994.
Benet D, Pellicer-Valero OJ. Artificial intelligence: the unstoppable revolution in ophthalmology. Surv Ophthalmol. 2022;67(1):252–270. PMID: 33741420. doi: 10.1016/j.survophthal.2021.03.003.
Jheng YC, Kao CL, Yarmishyn AA, Chou YB, Hsu CC, Lin TC, et al. The era of artificial intelligence-based individualized telemedicine is coming. J Chin Med Assoc. 2020;83(11):981–983. PMID: 32568967. doi: 10.1097/JCMA.0000000000000374.
Jo-hannssen C, Märki M, Zurich ETH. Psychological understanding of the term ‘artificial’. Cologny, Switzerland: World Economic Forum; 2021 [Available from: https://phys.org/news/2021-06-psychological-term-artificial.html#google_vignette.
Price A, Schroter S, Clarke M, McAneney H. Role of supplementary material in biomedical journal articles: surveys of authors, reviewers and readers. BMJ Open. 2018;8(9):e021753. PMID: 30249629. doi: 10.1136/bmjopen-2018-021753.
Batsis JA, Apolzan JW, Bagley PJ, Blunt HB, Divan V, Gill S, et al. A systematic review of dietary supplements and alternative therapies for weight loss. Obesity (Silver Spring). 2021;29(7):1102–1113. PMID: 34159755. doi: 10.1002/oby.23110.
Chustecki M. Benefits and risks of AI in health care: Narrative review. Interact J Med Res. 2024;13:e53616. PMID: 39556817. doi: 10.2196/53616.
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188– e194. PMID: 34286183. doi: 10.7861/fhj.2021-0095.
Mahmood U, Shukla-Dave A, Chan HP, Drukker K, Samala RK, Chen Q, et al. Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing. BJR Artif Intell. 2024;1(1):ubae003. PMID: 38476957. doi: 10.1093/bjrai/ubae003.
Kazzazi F. The automation of doctors and machines: A classification for AI in medicine (ADAM framework). Future Healthc J. 2021;8(2):e257–e262. PMID: 34286194. doi: 10.7861/fhj.2020-0189.
Lin H, Chen Q. Artificial intelligence (AI)-integrated educational applications and college students’ creativity and academic emotions: students and teachers’ perceptions and attitudes. BMC Psychol. 2024;12(1):487. PMID: 39285268. doi: 10.1186/s40359-024-01979-0.
Almansour M, Alfhaid FM. Generative artificial intelligence and the personalization of health professional education: A narrative review. Medicine (Baltimore). 2024;103(31):e38955. PMID: 39093806. doi: 10.1097/MD.0000000000038955.
Shaban-Nejad A, Michalowski M, Bianco S. Creative and generative artificial intelligence for personalized medicine and healthcare: Hype, reality, or hyperreality? Exp Biol Med (Maywood). 2023;248(24):2497–2499. PMID: 38311873. doi: 10.1177/15353702241226801.
Xu H, Yang X, Hu Y, Wang D, Liang Z, Mu H, et al. Trusted artificial intelligence for environmental assessments: An explainable high-precision model with multi-source big data. Environ Sci Ecotechnol. 2024;22:100479. PMID: 39286480. doi: 10.1016/j.ese.2024.100479.
Iannone A, Giansanti D. Breaking barriers—The intersection of AI and Assistive technology in autism care: A narrative review. J Pers Med. 2023;14(1). PMID: 38248742. doi: 10.3390/jpm14010041.
Zdravkova K, Krasniqi V, Dalipi F, Ferati M. Cutting-edge communication and learning assistive technologies for disabled children: An artificial intelligence perspective. Front Artif Intell. 2022;5:970430. PMID: 36388402. doi: 10.3389/frai.2022.970430.
Jin Q, Leaman R, Lu Z. PubMed and beyond: biomedical literature search in the age of artificial intelligence. EBioMedicine. 2024;100:104988. PMID: 38306900. doi: 10.1016/j.ebiom.2024.104988.
Schoeb D, Suarez-Ibarrola R, Hein S, Dressler FF, Adams F, Schlager D, et al. Use of artificial intelligence for medical literature search: Randomized controlled trial using the Hackathon Format. Interact J Med Res. 2020;9(1):e16606. PMID: 32224481. doi: 10.2196/16606.
Zhang B, Zhang L, Chen Q, Jin Z, Liu S, Zhang S. Harnessing artificial intelligence to improve clinical trial design. Commun Med (Lond). 2023;3(1):191. PMID: 38129570. doi: 10.1038/s43856-023-00425-3.
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1): 80–93. PMID: 33099022. doi: 10.1016/j.drudis.2020.10.010.
Ferrara M, Bertozzi G, Di Fazio N, Aquila I, Di Fazio A, Maiese A, et al. Risk management and patient safety in the artificial intelligence era: A systematic review. Healthcare (Basel). 2024;12(5). PMID: 38470660. doi: 10.3390/healthcare12050549.
Chen H, Cohen E, Wilson D, Alfred M. A Machine learning approach with human-AI collaboration for automated classification of patient safety event reports: Algorithm development and validation study. JMIR Hum Factors. 2024;11:e53378. PMID: 38271086. doi: 10.2196/53378.
Pacholec C, Flatland B, Xie H, Zimmerman K. Harnessing artificial intelligence for enhanced veterinary diagnostics: A look to quality assurance, Part I Model development. Vet Clin Pathol. 2024. PMID: 39638756. doi: 10.1111/vcp.13401.
Ghosh A, Choudhary G, Medhi B. The pivotal role of artificial intelligence in enhancing experimental animal model research: A machine learning perspective. Indian J Pharmacol. 2024;56(1):1–3. PMID: 38454581. doi: 10.4103/ijp.ijp_81_24.
Rudroff T. Artificial intelligence as a replacement for animal experiments in neurology: Potential, progress, and challenges. Neurol Int. 2024;16(4): 805–820. PMID: 39195562. doi: 10.3390/neurolint16040060.
Rahman MM, Khatun S, Kabir N, Khanam W, Maheshwari A, Shahidullah M. Establishment of the first religiously-compliant human milk bank in Bangladesh. Newborn (Clarksville). 2022;1(4). doi: 10.5005/jp-journals-11002-0047.
BSMMU. Neonatology, Bangabandhu Sheikh Mujib Medical University Dhaka, Bangladesh: BSMMU; 2025 [Available from: https://bsmmu.ac.bd/page/130.
Alnakshabandi K, Fiester A. Creating religiously compliant milk banks in the Muslim world: a commentary. Paediatr Int Child Health. 2016;36(1):4–6. PMID: 26750779. doi: 10.1080/20469047.2015.1110336.
El-Khuffash A, Unger S. The concept of milk kinship in Islam: issues raised when offering preterm infants of Muslim families donor human milk. J Hum Lact. 2012;28(2):125–127. PMID: 22311893. doi: 10.1177/0890334411434803.
Subudhi S, Sriraman N. Islamic beliefs about milk kinship and donor human milk in the United States. Pediatrics. 2021;147(2). PMID: 33483451. doi: 10.1542/peds.2020-0441.
Thompson S. Milk banks for premature babies: Religious debates in Bangladesh. World Faiths Development Dialogue: Berkley Center for Religion, Peace, and World Affairs; 2020 [Available from: https://berkleycenter.georgetown.edu/posts/milk-banks-for-premature-babies-religious-debates-in-bangladesh.
Reza PR. Bangladesh’s first Human Milk Bank faces challenges before inauguration The Hague, Netherlands: Global Voices; 2019 [Available from: https://globalvoices.org/2019/12/30/bangladeshs-first-human-milk-bank-faces-challenges-before-inauguration/.
Scilit. Robert D. Christensen. Basel, Switzerland: Scilit.com; 2025 [Available from: https://www.scilit.com/scholars/16719820.
Utah Uo. Robert D. Christensen Salt Lake City, Utah, USA: University of Utah; 2025 [Available from: https://medicine.utah.edu/faculty/robert-d-christensen.
Global-Newborn-Society. Newborn Clarksville, MD, USA: Global Newborn Society; 2021 [updated 2024. Available from: https://www. globalnewbornsociety.org/our-scientific-journal-newborn.
Hoyos AB, Salas A, Osiovich H, Fajardo CA, Baez M, Monterrosa L, et al. Using Weight Z-score differences between birth and discharge (Δ Z-score) to compare and monitor nutritional outcomes in neonatal units in Latin America using the EpicLatino database: Variables that are associated with poor growth. Newborn (Clarksville). 2025;4(1):1–5. doi: 10.5005/jp-journals-11002-0117.
Bertino E, Coscia A, Mombro M, Boni L, Rossetti G, Fabris C, et al. Postnatal weight increase and growth velocity of very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2006;91(5):F349–56. PMID: 16638781. doi: 10.1136/adc.2005.090993.
Bagga N, Panigrahi N, Germain A, Namazova I, Rahman MM, Saugstad OD, et al. Extrauterine Growth Restriction: Need for an Accurate Definition. Newborn (Clarksville). 2023;2(3):198–202. PMID: 37974930. doi: 10.5005/jp-journals-11002-0072.
Edwards EM, Greenberg LT, Horbar JD, Gagliardi L, Adams M, Berger A, et al. Discharge age and weight for very preterm infants in six countries: 2012–2020. Neonatology. 2023;120(2):208–216. PMID: 36649689. doi: 10.1159/000528013.
Simon L, Hanf M, Frondas-Chauty A, Darmaun D, Rouger V, Gascoin G, et al. Neonatal growth velocity of preterm infants: The weight Z-score change versus Patel exponential model. PLoS One. 2019;14(6):e0218746. PMID: 31251763. doi: 10.1371/journal.pone.0218746.
De Rose DU, Ronchetti MP, Martini L, Rechichi J, Iannetta M, Dotta A, et al. Diagnosis and management of neonatal bacterial sepsis: Current challenges and future perspectives. Trop Med Infect Dis. 2024;9(9). PMID: 39330888. doi: 10.3390/tropicalmed9090199.
Shah P, Malik SK, Motiani J, Lozy T, Bhavsar S. Evaluation of neonatal infections in the NICU over a 10-year period. Newborn (Clarksville). 2025;4(1): 6–12. doi: 10.5005/jp-journals-11002-0115.
Gomez Pomar E, McMasters H, Adams J, Robertson M. Donor vs maternal breast milk and factors associated with hyponatremia in preterm infants. Newborn (Clarksville). 2025;4(1):13–18. doi: 10.5005/jp-journals-11002-0119.
Araya BR, Ziegler AA, Grobe CC, Grobe JL, Segar JL. Sodium and growth in preterm infants: A review. Newborn (Clarksville). 2023;2(2):142–147. PMID: 37614871. doi: 10.5005/jp-journals-11002-0060.
Perrin MT, Friend LL, Sisk PM. Fortified donor human milk frequently does not meet sodium recommendations for the preterm infant. J Pediatr. 2022;244:219–223e1. PMID: 35093320. doi: 10.1016/j.jpeds.2022.01.029.
Boyd RS, Grooby ES, Bhuiyan H, Anaya DV, Rad HN, Malhotra A, et al. Infafeed monitor pilot study: Measuring ingested milk volumes in neonates. Newborn (Clarksville). 2025;4(1):19–24. doi: 10.5005/jp-journals-11002-0121.
Youngworth RN, Gallagher BB, Stamper BL. An overview of power spectral density (PSD) calculations. Optics and Photonics 2005; San Diego, California, USA. 2005;5869:206–216. DOI: 10.1117/12.618478.
Castro HM, Ferreira JC. Linear and logistic regression models: when to use and how to interpret them? J Bras Pneumol. 2023;48(6):e20220439. PMID: 36651441. doi: 10.36416/1806-3756/e20220439.
Al-Ethawi S, Sadick NIA, Hameed SA, Salih AH, Ben Ayad A, Alsharari NM, et al. Perioperative care after surgical correction of congenital heart defects in premature infants. Newborn (Clarksville). 2025;4(1):25–35. doi: 10.5005/jp-journals-11002-0122.
Ferreira LO, Vasconcelos VW, Lima JS, Vieira Neto JR, da Costa GE, Esteves JC, et al. Biochemical Changes in cardiopulmonary bypass in cardiac surgery: New Insights. J Pers Med. 2023;13(10). PMID: 37888117. doi: 10.3390/jpm13101506.
Cheung PY, Hajihosseini M, Dinu IA, Switzer H, Joffe AR, Bond GY, et al. Outcomes of preterm infants with congenital heart defects after early surgery: Defining risk factors at different time points during hospitalization. Front Pediatr. 2020;8:616659. PMID: 33585367. doi: 10.3389/fped.2020.616659.
Tham SQ, Lim EHL. Early extubation after pediatric cardiac surgery. Anesth Pain Med (Seoul). 2024;19(Suppl 1):S61–S72. PMID: 39069653. doi: 10.17085/apm.23154.
Harris KC, Holowachuk S, Pitfield S, Sanatani S, Froese N, Potts JE, et al. Should early extubation be the goal for children after congenital cardiac surgery? J Thorac Cardiovasc Surg. 2014;148(6):2642–2647. PMID: 25156467. doi: 10.1016/j.jtcvs.2014.06.093.
Dodds KM, Merle C. Discharging neonates with congenital heart disease after cardiac surgery: a practical approach. Clin Perinatol. 2005;32(4): 1031–1042, xi. PMID: 16325676. doi: 10.1016/j.clp.2005.09.009.
Singh S, Maheshwari A. Epigenetic regulation of macrophage polarization. Newborn (Clarksville). 2025;4(1):36–48. doi: 10.5005/jp-journals-11002-0118.
Maheshwari A. Innate Immune Memory in Macrophages. Newborn (Clarksville). 2023;2(1):60–79. PMID: 37206580. doi: 10.5005/jp-journals-11002-0058.
Nair J, Maheshwari A. Epigenetics in Necrotizing Enterocolitis. Curr Pediatr Rev. 2021;17(3):172–184. PMID: 33882811. doi: 10.2174/15733963176662 10421110608.
Minderjahn J, Schmidt A, Fuchs A, Schill R, Raithel J, Babina M, et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat Commun. 2020;11(1):402. PMID: 31964861. doi: 10.1038/s41467-019-13960-2.
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–357. PMID: 22473383. doi: 10.1038/nrg3173.
Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol. 2020;17(1): 36–49. PMID: 31664225. doi: 10.1038/s41423-019-0315-0.
Mezu-Ndubuisi OJ, Maheshwari A. Role of macrophages in fetal development and perinatal disorders. Pediatr Res. 2021;90(3):513–523. PMID: 33070164. doi: 10.1038/s41390-020-01209-4.
Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17(1):34–40. PMID: 26681460. doi: 10.1038/ni.3324.
Raghavendra PR, Nair S, Goyal M, Nathan MV, Haribalakrishna A, Sathe PA. Neonatal small colon syndrome in infants of diabetic mothers: Is it always a transient condition? Newborn (Clarksville). 2025;4(1):49–52. doi: 10.5005/jp-journals-11002-0116.
Stewart DR, Nixon GW, Johnson DG, Condon VR. Neonatal small left colon syndrome. Ann Surg. 1977;186(6):741–745. PMID: 603277. doi: 10.1097/00000658-197712000-00014.
Lotfollahzadeh S, Taherian M, Anand S. Hirschsprung disease. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi. nlm.nih.gov/books/NBK562142/.
Davis WS, Campbell JB. Neonatal small left colon syndrome. Occurrence in asymptomatic infants of diabetic mothers. Am J Dis Child. 1975;129(9): 1024–1027. PMID: 1190176. doi: 10.1001/archpedi.1975.02120460014004.
Philippart AI, Reed JO, Georgeson KE. Neonatal small left colon syndrome: intramural not intraluminal obstruction. J Pediatr Surg. 1975;10(5): 733–740. PMID: 1185461. doi: 10.1016/0022-3468(75)90378-4.
Ben Ayad AA, Abdullatif M. Neonatal hypothyroidism following prolonged exposure to povidone-iodine in a preterm infant with giant omphalocele: A case report and call for awareness. Newborn (Clarksville). 2025;4(1):53–57. doi: 10.5005/jp-journals-11002-0120.
Ghattaura H, Ross A, Aldeiri B, Mutanen A, Saxena A. Managing giant omphalocele: A systematic review of surgical techniques and outcomes. Acta Paediatr. 2024;113(11):2459–2465. PMID: 38992931. doi: 10.1111/apa.17346.
Wagner JP, Cusick RA. Paint and wait management of giant omphaloceles. Semin Pediatr Surg. 2019;28(2):95–100. PMID: 31072465. doi: 10.1053/j. sempedsurg.2019.04.005.
Whitehouse JS, Gourlay DM, Masonbrink AR, Aiken JJ, Calkins CM, Sato TT, et al. Conservative management of giant omphalocele with topical povidone-iodine and its effect on thyroid function. J Pediatr Surg. 2010;45(6):1192–1197. PMID: 20620319. doi: 10.1016/j.jpedsurg.2010.02.091.
Cosman BC, Schullinger JN, Bell JJ, Regan JA. Hypothyroidism caused by topical povidone-iodine in a newborn with omphalocele. J Pediatr Surg. 1988;23(4):356–358. PMID: 3385590. doi: 10.1016/s0022-3468(88)80207-0.