Down syndrome (DS) can show a wide clinical range in terms of type/severity of presentations/defects. This extensive heterogeneity/pleiotropy is surprising because DS is rooted in a fairly restricted genetic zone; nearly 95% have a freely segregating triplication of human chromosome 21 (Homo sapiens 21, Hsa21). The remaining 5% may carry translocated 21 or mosaicism of mixed clones. As in most genetic disorders, gene-dosage/copy number variations are a consideration. However, a possibility of epigenetic modifications is also being considered; this is an attractive area for study because many epigenetic marks are reversible, which might provide opportunities for therapeutic interventions aimed at prophylaxis/treatment/remission/reversal aimed at cure/rehabilitation of these patients. In this article, we have reviewed epigenetic changes in DS. Ongoing efforts show that these changes in DS might not be limited to Hsa21 but could be genome-wide; DNA methylation, post-translational histone modifications, and histone core variants have been noted. Existing data emphasize two trans-acting molecular mechanisms. The first involves enhanced expression of regulatory genes through histone modifications such as Hsa21-linked S-adenosylmethionine (SAM)-dependent methylation; and the effect of transcription factors such as Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A (DYRK1A), ETS2, high mobility group nucleosome binding domain 1 (HMGN1), Bromodomain and WD repeat domain containing 1 (BRWD1), and RUNX family transcription factor 1 (RUNX1). The second involves Hsa21q21 microRNAs (miRNAs) lethal-7c (let7c), miRNA-99a, and miRNA-125b encoded at the band q21.1; miRNA-802 at q21.12, and miRNA-155 at q21.3. Wherever possible, we focused on the protein-coding gene EURL (early undifferentiated retina and lens) as a read-out; Early undifferentiated retina and lens is the Chromosome 21 open reading frame 91 (C21ORF91) located at the centromeric boundary of the DS critical region (DSCR). We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Zigman WB, Lott IT. Alzheimer's disease in Down syndrome: Neurobiology and risk. Ment Retard Dev Disabil Res Rev 2007;13(3):237–246. DOI: 10.1002/MRDD.20163.
Gaugler J, James B, Johnson T, et al. 2016 Alzheimer's disease facts and figures. Alzheimers Dement 2016;12(4):459–509. DOI: 10.1016/J.JALZ.2016.03.001.
Ness S, Rafii M, Aisen P, et al. Down's syndrome and Alzheimer's disease: Towards secondary prevention. Nat Rev Drug Dis 2012;11(9):655–656. DOI: 10.1038/nrd3822.
Aït Yahya-Graison E, Aubert J, Dauphinot L, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: Impact on disease phenotypes. Am J Hum Genet 2007;81(3):475–491. DOI: 10.1086/520000.
Ganguly BB. Chromosomal etiology of Down syndrome: Genesis of trisomy 21. In: Genetics and Neurobiology of Down Syndrome. 2022; pp. 41–57. DOI: 10.1016/B978-0-323-90456-8.00004-1.
Olson LE, Richtsmeier JT, Leszl J, et al. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 2004;306(5696):687–690. DOI: 10.1126/SCIENCE.1098992.
Jiang X, Liu C, Yu T, et al. Genetic dissection of the Down syndrome critical region. Hum Mol Genet 2015;24(22):6540–6551. DOI: 10.1093/HMG/DDV364.
Pelleri MC, Locatelli C, Mattina T, et al. Partial trisomy 21 with or without highly restricted Down syndrome critical region (HR-DSCR): Report of two new cases and reanalysis of the genotype–phenotype association. BMC Med Genomics 2022;15(1):1–12. DOI: 10.1186/S12920-022-01422-6/FIGURES/4.
Antonaros F, Pitocco M, Abete D, et al. Structural characterization of the highly restricted down syndrome critical region on 21q22.13: New KCNJ6 and DSCR4 transcript isoforms. Front Genet 2021;12:770359. DOI: 10.3389/FGENE.2021.770359/BIBTEX.
Ghosh S, Jackson-Cook C, Singhal N, et al. Editorial: Down syndrome: Genetic and epigenetic influences on this multi-faceted condition. Front Genet 2023;14:1163133. DOI: 10.3389/FGENE.2023.1163133/BIBTEX.
Wisniewski KE, Wisniewski HM, Wen GY. Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann Neurol 1985;17(3):278–282. DOI: 10.1002/ANA.410170310.
Mann DMA. Alzheimer's disease and Down's syndrome. Histopathology 1988;13(2):125–137. DOI: 10.1111/J.1365-2559.1988.TB02018.X.
Dekker AD, De Deyn PP, Rots MG. Epigenetics: The neglected key to minimize learning and memory deficits in Down syndrome. Neurosci Biobehav Rev 2014;45:72–84. DOI: 10.1016/J.NEUBIOREV.2014.05.004.
Dekker AD, De Deyn PP, Rots MG. Epigenetics and down syndrome. Neuropsychiatr Dis Epigenet 2017;163–184. DOI: 10.1016/B978-0-12-800226-1.00009-5.
Ponroy Bally B, Farmer WT, Jones EV, et al. Human iPSC-derived down syndrome astrocytes display genome-wide perturbations in gene expression, an altered adhesion profile, and increased cellular dynamics. Hum Mol Genet 2020;29(5):785. DOI: 10.1093/HMG/DDAA003.
El Hajj N, Dittrich M, Böck J, et al. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics 2016;11(8):563. DOI: 10.1080/15592294.2016.1192736.
Baburamani AA, Patkee PA, Arichi T, et al. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019;61(8): 867–879. DOI: 10.1111/dmcn.14260.
Muskens IS, Li S, Jackson T, et al. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nature Comm 2021;12(1):1–15. DOI: 10.1038/s41467-021-21064-z.151.
Chapman LR, Ramnarine IVP, Zemke D, et al. Gene expression studies in down syndrome: What do they tell us about disease phenotypes? Int J Mol Sci 2024;25(5):2968. DOI: 10.3390/IJMS25052968.
Yu YE, Xing Z, Do C, et al. Genetic and epigenetic pathways in Down syndrome: Insights to the brain and immune system from humans and mouse models. Prog Brain Res 2020;251:1. DOI: 10.1016/BS.PBR.2019.09.002.
de Castro CPM, Cadefau M, Cuartero S. The mutational landscape of myeloid leukaemia in down syndrome. Cancers (Basel) 2021;13(16):4144. DOI: 10.3390/CANCERS13164144.
Jin S, Lee YK, Lim YC, et al. Global DNA hypermethylation in Down syndrome placenta. PLoS Genet 2013;9(6):e1003515. DOI: 10.1371/JOURNAL.PGEN.1003515.
Ciccarone F, Valentini E, Malavolta M, et al. DNA hydroxymethylation levels are altered in blood cells from down syndrome persons enrolled in the MARK-AGE project. J Gerontol A Biol Sci Med Sci 2017;73(6):737. DOI: 10.1093/GERONA/GLX198.
Canzonetta C, Mulligan C, Deutsch S, et al. DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in down syndrome. Am J Hum Genet 2008;83(3):388–400. DOI: 10.1016/J.AJHG.2008.08.012.
Huang T, Fakurazi S, Cheah PS, et al. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023;24(12):9980. DOI: 10.3390/IJMS24129980.
Alsaqati M, Davis BA, Wood J, et al. NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with Intellectual disability (ID) and Schizophrenia. Transl Psychiatry 2022;12(1):1–10. DOI: 10.1038/s41398-022-02199-z.
Zhao Y, Jaber V, Percy ME, et al. A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21.1-chr21q21.3 and the phenotypic diversity of Down's syndrome (DS; trisomy 21). J Nat Sci 2017;3(9):e446. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5613287/.
Brás A, Rodrigues AS, Gomes B, et al. Down syndrome and microRNAs. Biomed Rep 2017;8(1):11. DOI: 10.3892/BR.2017.1019.
Farroni C, Marasco E, Marcellini V, et al. Dysregulated miR-155 and miR-125b are related to impaired B-cell responses in down syndrome. Front Immunol 2018;9:2683. DOI: 10.3389/FIMMU.2018.02683/FULL.
Mahernia S, Hassanzadeh M, Adib M, et al. The possible effect of microRNA-155 (miR-155) and BACE1 inhibitors in the memory of patients with down syndrome and Alzheimer's disease: Design, synthesis, virtual screening, molecular modeling and biological evaluations. J Biomol Struct Dyn 2022;40(13):5803–5814. DOI: 10.1080/07391102.2021.1873861.
Shi WL, Liu ZZ, Wang HD, et al. Integrated miRNA and mRNA expression profiling in fetal hippocampus with Down syndrome. J Biomed Sci 2016;23(1):48. DOI: 10.1186/S12929-016-0265-0221.
Moreira-Filho CA, Bando SY, Bertonha FB, et al. Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016;7(7):7497–7533. DOI: 10.18632/oncotarget.7120.
Lim JH, Lee DE, Kim SY, et al. MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet 2015;32(5):827–837. DOI: 10.1007/S10815-015-0429-Y.
Lin H, Sui W, Li W, et al. Integrated microRNA and protein expression analysis reveals novel microRNA regulation of targets in fetal down syndrome. Mol Med Rep 2016;14(5):4109–4118. DOI: 10.3892/MMR.2016.5775.224.
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology 2013 20:3. 2013;20(3):300-307. DOI: 10.1038/nsmb.2480.
Aapola U, Liiv I, Peterson P. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 2002;30(16):3602–3608. DOI: 10.1093/nar/gkf474.
Ooi L, Wood IC. Chromatin crosstalk in development and disease: Lessons from REST. Nat Rev Genet 2007;8(7):544–554. DOI: 10.1038/nrg2100.
Infantino V, Castegna A, Iacobazzi F, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down's syndrome. Mol Genet Metab 2011;102(3):378–382. DOI: 10.1016/J.YMGME.2010.11.166.
Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010;10(1):12–31. DOI: 10.1016/J.MITO.2009.09.006.
Guo X, Williams JG, Schug TT, et al. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010;285(17):13223–13232. DOI: 10.1074/JBC.M110.102574.
Barrett RM, Wood MA. Beyond transcription factors: The role of chromatin modifying enzymes in regulating transcription required for memory. Learn Mem 2008;15(7):460–467. DOI: 10.1101/LM.917508.
Weeber EJ, Sweatt JD. Molecular neurobiology of human cognition. Neuron 2002;33(6):845–848. DOI: 10.1016/S0896-6273(02)00634-7.
Lepagnol-Bestel AM, Zvara A, Maussion G, et al. DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 2009;18(8):1405–1414. DOI: 10.1093/HMG/DDP047.
Huang H, Rambaldi I, Daniels E, et al. Expression of the Wdr9 gene and protein products during mouse development. Dev Dyn 2003;227(4):608–614. DOI: 10.1002/DVDY.10344.
Bakshi R, Hassan MQ, Pratap J, et al. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J Cell Physiol 2010;225(2):569–576. DOI: 10.1002/JCP.22240.
Sanchez-Mut JV, Huertas D, Esteller M. Aberrant epigenetic landscape in intellectual disability. Prog Brain Res 2012;197:53–71. DOI: 10.1016/B978-0-444-54299-1.00004-2.
Gardiner K, Davisson M. The sequence of human chromosome 21 and implications for research into Down syndrome. Genome Biol 2000;1(2):reviews0002.1. DOI: 10.1186/GB-2000-1-2-REVIEWS0002.
Reese BE, Bachman KE, Baylin SB, et al. The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol Cell Biol 2003;23(9):32263236. DOI: 10.1128/MCB.23.9.3226-3236.2003.
Ueda T, Postnikov YV, Bustin M. Distinct domains in high mobility group N variants modulate specific chromatin modifications. J Biol Chem 2006;281(15):10182–10187. DOI: 10.1074/JBC.M600821200.
Abuhatzira L, Shamir A, Schones DE, et al. The chromatin-binding protein HMGN1 regulates the expression of methyl CpG-binding protein 2 (MECP2) and affects the behavior of mice. J Biol Chem 2011;286(49):42051–42062. DOI: 10.1074/JBC.M111.300541.
Weng YL, An R, Shin J, et al. DNA modifications and neurological disorders. Neurotherapeutics 2013;10(4):556–567. DOI: 10.1007/S13311-013-0223-4.
Day JJ, Sweatt JD. DNA methylation and memory formation. Nat Neurosci 2010;13(11):1319–1323. DOI: 10.1038/nn.2666.
Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet 2000;9(16):2395–2402. DOI: 10.1093/HMG/9.16.2395.
Margot JB, Ehrenhofer-Murray AE, Leonhardt H. Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol 2003;4(1):1–9. DOI: 10.1186/1471-2199-4-7/TABLES/1.
Deplus R, Brenner C, Burgers WA, et al. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 2002;30(17):3831–3838. DOI: 10.1093/NAR/GKF509.
Ooi SKT, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007;448(7154):714–717. DOI: 10.1038/nature05987.
Suetake I, Shinozaki F, Miyagawa J, et al. DNMT3L Stimulates the DNA Methylation Activity of Dnmt3a and Dnmt3b through a Direct Interaction. Journal of Biological Chemistry. 2004;279(26):27816–27823. DOI: 10.1074/JBC.M400181200.
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324(5929):930–935. DOI: 10.1126/SCIENCE.1170116/SUPPL_FILE/TAHILIANI_SOM.PDF.
Zhang RR, Cui QY, Murai K, et al. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 2013;13(2):237–245. DOI: 10.1016/J.STEM.2013.05.006.
Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009;323(5917):1074–1077. DOI: 10.1126/SCIENCE.1166859/SUPPL_FILE/MA.SOM.PDF.
Gräff J, Tsai LH. Histone acetylation: Molecular mnemonics on the chromatin. Nat Rev Neurosci 2013;14(2):97–111. DOI: 10.1038/nrn3427.
Peleg S, Sananbenesi F, Zovoilis A, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010;328(5979):753–756. DOI: 10.1126/SCIENCE.1186088/SUPPL_FILE/PELEG.SOM.PDF.
Pogribna M, Melnyk S, Pogribny I, et al. Homocysteine metabolism in children with Down syndrome: In vitro modulation. Am J Hum Genet 2001;69(1):88–95. DOI: 10.1086/321262.
Bacalini MG, Gentilini D, Boattini A, et al. Identification of a DNA methylation signature in blood cells from persons with Down syndrome. Aging 2015;7(2):82–96. DOI: 10.18632/AGING.100715.
Mendioroz M, Do C, Jiang X, et al. Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol 2015;16(1):1–26. DOI: 10.1186/S13059-015-0827-6/TABLES/1.
Henneman P, Bouman A, Mul A, et al. Widespread domain-like perturbations of DNA methylation in whole blood of Down syndrome neonates. PLoS One 2018;13(3):e0194938. DOI: 10.1371/JOURNAL.PONE.0194938.
Kerkel K, Schupf N, Hatta K, et al. Altered DNA methylation in leukocytes with Trisomy 21. PLoS Genet 2010;6(11):e1001212. DOI: 10.1371/JOURNAL.PGEN.1001212.
Ram G, Chinen J. Infections and immunodeficiency in Down syndrome. Clin Exp Immunol 2011;164(1):9–16. DOI: 10.1111/J.1365-2249.2011.04335.X.
Jones MJ, Farré P, McEwen LM, et al. Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in Down syndrome. BMC Med Genomics 2013;6(1):58. DOI: 10.1186/1755-8794-6-58.
Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007;8(1):11–20. DOI: 10.1038/NRN2043.
Weiner JA, Jontes J. Protocadherins, not prototypical: A complex tale of their interactions, expression, and functions. Front Mol Neurosci 2013;6:4. DOI: 10.3389/FNMOL.2013.00004.
Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 1999;97(6):779–790. DOI: 10.1016/S0092-8674(00)80789-8/ASSET/DFE64811-5B0E-4034-A7EA-6C8B3513D4F6/MAIN.ASSETS/GR6.JPG.
Guo JU, Su Y, Zhong C, et al. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 2011;10(16):2662–2668. DOI: 10.4161/CC.10.16.17093.
Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011;145(3):423–434. DOI: 10.1016/J.CELL.2011.03.022.
Luger K, Dechassa ML, Tremethick DJ. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 2012;13(7):436–447. DOI: 10.1038/nrm3382.
Creppe C, Posavec M, Douet J, et al. MacroH2A in stem cells: A story beyond gene repression. Epigenomics 2012;4(2):221–227. DOI: 10.2217/EPI.12.8.
Pink RC, Wicks K, Caley DP, et al. Pseudogenes: Pseudo-functional or key regulators in health and disease? RNA 2011;17(5):792. DOI: 10.1261/RNA.2658311.
Eckmann-Scholz C, Bens S, Kolarova J, et al. DNA-methylation profiling of fetal tissues reveals marked epigenetic differences between chorionic and amniotic samples. PLoS One 2012;7(6):e39014. DOI: 10.1371/JOURNAL.PONE.0039014.
Verreault A, Kaufman PD, Kobayashi R, et al. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 1996;87(1):95–104. DOI: 10.1016/S0092-8674(00)81326-4.
Kaufman PD, Kobayashi R, Kessler N, et al. The p150 and p60 subunits of chromatin assembly factor I: A molecular link between newly synthesized histones and DNA replication. Cell 1995;81(7):1105–1114. DOI: 10.1016/S0092-8674(05)80015-7.
Bartholdi D, Roelfsema JH, Papadia F, et al. Genetic heterogeneity in Rubinstein–Taybi syndrome: Delineation of the phenotype of the first patients carrying mutations in EP300. J Med Genet 2007;44(5):327–333. DOI: 10.1136/JMG.2006.046698.
Qiu Z, Sylwestrak EL, Lieberman DN, et al. The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci 2012;32(3):989–994. DOI: 10.1523/JNEUROSCI.0175-11.2012.
Brink MC, Piebes DGE, de Groote ML, et al. A role for MeCP2 in switching gene activity via chromatin unfolding and HP1γ displacement. PLoS One 2013;8(7):e69347. DOI: 10.1371/JOURNAL.PONE.0069347.
Samaco RC, Neul JL. Complexities of Rett syndrome and MeCP2. J Neurosci 2011;31(22):7951. DOI: 10.1523/JNEUROSCI.0169-11.2011.
Laan L, Klar J, Sobol M, et al. DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors. Clin Epigenetics 2020;12(1):9. DOI: 10.1186/S13148-019-0803-1.
Albig W, Kioschis P, Poustka A, et al. Human histone gene organization: Nonregular arrangement within a large cluster. Genomics 1997;40(2):314–322. DOI: 10.1006/GENO.1996.4592.
Letourneau A, Santoni FA, Bonilla X, et al. Domains of genome-wide gene expression dysregulation in Down's syndrome. Nature 2014;508(7496):345–350. DOI: 10.1038/nature13200.
Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007;81(2):405–413. DOI: 10.1086/519979.
Lukiw WJ. NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells. Exp Neurol 2012;235(2):484–490. DOI: 10.1016/J.EXPNEUROL.2011.11.022.
Svobodová I, Korabečná M, Calda P, et al. Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn 2016;36(8):775–784. DOI: 10.1002/PD.4861.
Karaca E, Aykut A, Ertürk B, et al. MicroRNA expression profile in the prenatal amniotic fluid samples of pregnant women with down syndrome. Balkan Med J 2018;35(2):163. DOI: 10.4274/BALKANMEDJ.2017.0511.
Erturk B, Karaca E, Aykut A, et al. Prenatal evaluation of microRNA expressions in pregnancies with down syndrome. Biomed Res Int 2016;2016(1):5312674. DOI: 10.1155/2016/5312674.
Vizitiu AC, Stambouli D, Pavel AG, et al. Mature miR-99a upregulation in the amniotic fluid samples from female fetus down syndrome pregnancies: A pilot study. Medicina 22019;55(11):728. DOI: 10.3390/MEDICINA55110728.
Kotlabova K, Doucha J, Chudoba D, et al. Extracellular chromosome 21-derived microRNAs in euploid & aneuploid pregnancies. Indian J Med Res 2013;138(6):935. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3978985/.
Kehler L, Biro O, Lazar L, et al. Elevated hsa-miR-99a levels in maternal plasma may indicate congenital heart defects. 2015;3(6):869–873. Available from: https://www.spandidos-publications.com/10.3892/br.2015.510.
Xu Y, Li W, Liu X, et al. Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene 2013;530(2):278–286. DOI: 10.1016/J.GENE.2013.07.055.
Izzo A, Manco R, Cristofaro T De, et al. Overexpression of chromosome 21 miRNAs may affect mitochondrial function in the hearts of down syndrome fetuses. Int J Genomics 2017;2017(1):8737649. DOI: 10.1155/2017/8737649.
Coppola A, Romito A, Borel C, et al. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 2014;12(2):323–337. DOI: 10.1016/J.SCR.2013.11.008.
Cataldo AM, Peterhoff CM, Troncoso JC, et al. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and down syndrome: Differential effects of APOE genotype and presenilin mutations. Am J Pathol 2000;157(1):277–286. DOI: 10.1016/S0002-9440(10)64538-5.
Joubert L, Hanson B, Barthet G, et al. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: Roles in receptor targeting. J Cell Sci 2004;117(Pt 22):5367–5379. DOi: 10.1242/JCS.01379.
Wang X, Zhao Y, Zhang X, et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat Med 2013;19(4):473–480. DOI: 10.1038/nm.3117.
Kaur G, Sharma A, Xu W, et al. Glutamatergic Transmission Aberration: A major cause of behavioral deficits in a murine model of Down's syndrome. J Neurosci 2014;34(15):5099. DOI: 10.1523/JNEUROSCI.5338-13.2014.
Nagarajan RP, Hogart AR, Gwye Y, et al. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 2006;1(4):172–182. DOI: 10.4161/EPI.1.4.3514.
Keck-Wherley J, Grover D, Bhattacharyya S, et al. Abnormal microRNA expression in Ts65Dn hippocampus and whole blood: Contributions to down syndrome phenotypes. Dev Neurosci 2011;33(5):451–467. DOI: 10.1159/000330884.
Kuhn DE, Nuovo GJ, Terry AV, et al. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human down syndrome brains. J Biol Chem 2010;285(2):1529–1543. DOI: 10.1074/JBC.M109.033407/ATTACHMENT/4D0CE77C-1B90-4635-A448-7E96247028DA/MMC1.PDF.
Li YY, Alexandrov PN, Pogue AI, et al. MiRNA-155 upregulation and complement factor H deficits in Down's syndrome. Neuroreport 2012;23(3):168–173. DOI: 10.1097/WNR.0B013E32834F4EB4.
Lim JH, Kim DJ, Lee DE, et al. Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta 2015;36(3):322–328. DOI: 10.1016/J.PLACENTA.2014.12.020.
Kamhieh-Milz J, Moftah RFH, Bal G, et al. Differentially expressed microRNAs in maternal plasma for the noninvasive prenatal diagnosis of down syndrome (Trisomy 21). Biomed Res Int 2014;2014(1):402475. DOI: 10.1155/2014/402475.
Zedníková I, Chylíková B, Šeda O, et al. Genome-wide miRNA profiling in plasma of pregnant women with down syndrome fetuses. Mol Biol Rep. 2020;47(6):4531–4540. DOI: 10.1007/S11033-020-05545-W/TABLES/3.
Yang H, Ma Q, Wang Y, et al. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J Transl Med 2020;18(1):1–9. DOI: 10.1186/S12967-020-02227-W/METRICS.
Reza Karimzadeh M, Ehtesham N, Mortazavi D, et al. Alterations of epigenetic landscape in Down syndrome carrying pregnancies: A systematic review of case-control studies. Eur J Obstet Gynecol Reprod Biol 2021;264:189–199. DOI: 10.1016/J.EJOGRB.2021. 06.027.
Zbucka-Kretowska M, Niemira M, Paczkowska-Abdulsalam M, et al. Prenatal circulating microRNA signatures of foetal Down syndrome. Scientific Reports 2019 9:1. 2019;9(1):1-6. DOI: 10.1038/s41598-018-35876-5
Della Ragione F, Gagliardi M, D'Esposito M, et al. Non-coding RNAs in chromatin disease involving neurological defects. Front Cell Neurosci. 2014;8(FEB):78039. DOI: 10.3389/FNCEL.2014.00054/BIBTEX.
Bhartiya D, Pal K, Ghosh S, et al. lncRNome: A comprehensive knowledgebase of human long noncoding RNAs. Database (Oxford). 2013;2013. DOI: 10.1093/DATABASE/BAT034.
Papageorgiou EA, Karagrigoriou A, Tsaliki E, et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nature Medicine 2011 17:4. 2011;17(4):510-513. DOI: 10.1038/nm.2312.
Lim JH, Lee DE, Park SY, et al. Disease specific characteristics of fetal epigenetic markers for non-invasive prenatal testing of trisomy 21. BMC Med Genomics 2014;7(1). DOI: 10.1186/1755-8794-7-1.
Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011;108(9):3630–3635. DOI: 10.1073/PNAS.1012311108/SUPPL_FILE/PNAS.201012 311SI.PDF.
van der Wijst MGP, Rots MG. Mitochondrial epigenetics: An overlooked layer of regulation? Trends Genet 2015;31(7):353–356. DOI: 10.1016/J.TIG.2015.03.009.
Chango A, Abdennebi-Najar L, Tessier F, et al. Quantitative methylation-sensitive arbitrarily primed PCR method to determine differential genomic DNA methylation in down syndrome. Biochem Biophys Res Commun 2006;349(2):492–496. DOI: 10.1016/J.BBRC.2006.08.038.
Lee SH, Lee S, Jun HS, et al. Expression of the Mitochondrial ATPase6 Gene and Tfam in Down Syndrome. Mol Cells. 2003;15(2):181-185. DOI: 10.1016/S1016-8478(23)13725-3.
Conti A, Fabbrini F, D'Agostino P, et al. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics 2007;8:268. DOI: 10.1186/1471-2164-8-268.
Valenti D, Tullo A, Caratozzolo MF, et al. Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochem J 2010;431(2):299–310. DOI: 10.1042/BJ20100581.
Lambeth JD. Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radic Biol Med 2007;43(3):332–347. DOI: 10.1016/J.FREERADBIOMED.2007.03.027.
Brugge KL, Nichols S, Delis D, et al. The role of alterations in free radical metabolism in mediating cognitive impairments in Down's syndrome. EXS 1992;62:190–198. DOI: 10.1007/978-3-0348-7460-1_19.
Lubec G, Engidawork E. The brain in Down syndrome (Trisomy 21). J Neurol 2002;249(10):1347–1356. DOI: 10.1007/S00415-002-0799-9/METRICS.
Pagano G, Castello G. Oxidative stress and mitochondrial dysfunction in down syndrome. Adv Exp Med Biol 2012;724:291–299. DOI: 10.1007/978-1-4614-0653-2_22.
Friedland-Leuner K, Stockburger C, Denzer I, et al. Mitochondrial dysfunction: Cause and consequence of Alzheimer's disease. Prog Mol Biol Transl Sci 2014;127:183–210. DOI: 10.1016/B978-0-12-394625-6.00007-6.
Valenti D, De Rasmo D, Signorile A, et al. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome. Biochim Biophys Acta 2013;1832(4):542–552. DOI: 10.1016/J.BBADIS.2012.12.011.
Benavides-Piccione R, Ballesteros-Yáñez I, Martínez De Lagrán M, et al. On dendrites in Down syndrome and DS murine models: A spiny way to learn. Prog Neurobiol 2004;74(2):111–126. DOI: 10.1016/J.PNEUROBIO.2004.08.001.
Weitzdoerfer R, Dierssen M, Fountoulakis M, et al. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transmission 2001;(61):59–70. DOI: 10.1007/978-3-7091-6262-0_5.
Kleschevnikov AM, Belichenko PV, Salehi A, et al. Discoveries in down syndrome: Moving basic science to clinical care. Prog Brain Res 2012;197:199–221. DOI: 10.1016/B978-0-444-54299-1.00010-8.
Sailani MR, Santoni FA, Letourneau A, et al. DNA-methylation patterns in trisomy 21 using cells from monozygotic twins. PLoS One 2015;10(8):e0135555. DOI: 10.1371/JOURNAL.PONE.0135555.
Lu J, Mccarter M, Lian G, et al. Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum Mol Genet 2016;25(9):1714–1727. DOI: 10.1093/HMG/DDW043.
Horvath S, Garagnani P, Bacalini MG, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 2015;14(3):491–495. DOI: 10.1111/ACEL.12325
Smith DJ, Stevens ME, Sudanagunta SP, et al. Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 1997;16(1):28–36. DOI: 10.1038/NG0597-28.
Fotaki V, Dierssen M, Alcántara S, et al. Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol Cell Biol 2002;22(18):6636–6647. DOI: 10.1128/MCB.22.18.6636-6647.2002.
Tejedor F, Zhu XR, Kaltenbach E, et al. Minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 1995;14(2):287–301. DOI: 10.1016/0896-6273(95) 90286-4.
Altafaj X, Dierssen M, Baamonde C, et al. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum Mol Genet 2001;10(18):1915–1923. DOI: 10.1093/HMG/10.18.1915.
Yang EJ, Ahn YS, Chung KC. Protein Kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J Biol Chem 2001;276(43):39819–39824. DOI: 10.1074/JBC.M104091200.
Bahn S, Mimmack M, Ryan M, et al. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down's syndrome: A gene expression study. Lancet 2002;359(9303):310–315. DOI: 10.1016/S0140-6736(02)07497-4.
Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science 1995;267(5202):1360–1363. DOI: 10.1126/SCIENCE. 7871435.
Sun YM, Greenway DJ, Johnson R, et al. Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol Biol Cell 2005;16(12):5630. DOI: 10.1091/MBC.E05-07-0687.
Stadler MB, Murr R, Burger L, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature. 2011;480(7378):490–495. DOI: 10.1038/NATURE10716.
FitzPatrick DR, Ramsay J, McGill NI, et al. Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 2002;11(26):3249–3256. DOI: 10.1093/HMG/11.26.3249.
Wang X, Weiner JA, Levi S, et al. Gamma protocadherins are required for survival of spinal interneurons. Neuron 2002;36(5):843–854. DOI: 10.1016/S0896-6273(02)01090-5.
Garrett AM, Weiner JA. Control of CNS synapse development by γ-protocadherin-mediated astrocyte–neuron contact. J Neurosci 2009;29(38):11723–11731. DOI: 10.1523/JNEUROSCI.2818-09.2009.
Garrett AM, Schreiner D, Lobas MA, et al. γ-Protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 2012;74(2):269–276. DOI: 10.1016/J.NEURON.2012.01.028/ATTACHMENT/43837F89-7B12-4CD9-B9DB-E4B9B0E859B1/MMC1.PDF.
Chen WV, Alvarez FJ, Lefebvre JL, et al. Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron 2012;75(3):402–409. DOI: 10.1016/j.neuron.2012.06.039.
Lefebvre JL, Kostadinov D, Chen WV, et al. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 2012;488(7412):517–521. DOI: 10.1038/NATURE11305.
Toyoda S, Kawaguchi M, Kobayashi T, et al. Developmental epigenetic modification regulates stochastic expression of clustered Protocadherin genes, generating single neuron diversity. Neuron 2014;82(1):94–108. DOI: 10.1016/J.NEURON.2014.02.005/ATTACHMENT/6925BA82-3A04-4E93-A2E3-B49F789B4D7B/MMC1.PDF.
Farcas R, Schneider E, Frauenknecht K, et al. Differences in DNA methylation patterns and expression of the CCRK gene in human and nonhuman primate cortices. Mol Biol Evol 2009;26(6):1379–1389. DOI: 10.1093/MOLBEV/MSP046.
Shima Y, Kawaguchi SY, Kosaka K, et al. Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci 2007;10(8):963–969. DOI: 10.1038/nn1933.
Lott IT, Dierssen M. Cognitive deficits and associated neurological complications in individuals with Down's syndrome. Lancet Neurol 2010;9(6):623–633. DOI: 10.1016/S1474-4422(10)70112-5.135.
Zhegalova IV, Vasiluev PA, Flyamer IM, et al. Trisomies reorganize human 3D genome. Int J Mol Sci 2023;24(22):16044. DOI: 10.3390/ijms242216044.
Sobol M, Klar J, Laan L, et al. Transcriptome and proteome profiling of neural induced pluripotent stem cells from individuals with down syndrome disclose dynamic dysregulations of key pathways and cellular functions. Mol Neurobiol 2019;56(10):7113–7127. DOI: 10.1007/S12035-019-1585-3.
Laufer BI, Hwang H, Vogel Ciernia A, et al. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019;14(7):672–684. DOI: 10.1080/15592294.2019.1609867.
Do C, Xing Z, Yu YE, et al. Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models. Epigenomics 2017;9(2):189–207. DOI: 10.2217/EPI-2016-0138.
Chen MJ, Yokomizo T, Zeigler BM, et al. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009;457(7231):887–891. DOI: 10.1038/nature07619.
Kubota Y, Uryu K, Ito T, et al. Integrated genetic and epigenetic analysis revealed heterogeneity of acute lymphoblastic leukemia in Down syndrome. Cancer Sci 2019;110(10):3358. DOI: 10.1111/CAS.14160.
Miyoshi H, Ohira M, Shimizu K, et al. Alternative splicing and genomic structure of the AML1 gene i