Newborn

Register      Login

VOLUME 3 , ISSUE 3 ( July-September, 2024 ) > List of Articles

REVIEW ARTICLE

Cranial Ultrasound as an Imaging Modality in Neonatal Sepsis to Determine Involvement of the Central Nervous System

Reema Garegrat, Chinmay Chetan, Chandrakala BS, Rema Nagpal, Jayanta Hazarika, Nikita Jethwa, Rajendra Puri, Ogtay Huseynov, Akhil Maheshwari, Pradeep Suryawanshi

Keywords : Brain abscess, Central nervous system, Cranial ultrasound, Fungal infections, Meningitis, Neonates, Point-of-care ultrasound, Sepsis, Viral infections

Citation Information : Garegrat R, Chetan C, BS C, Nagpal R, Hazarika J, Jethwa N, Puri R, Huseynov O, Maheshwari A, Suryawanshi P. Cranial Ultrasound as an Imaging Modality in Neonatal Sepsis to Determine Involvement of the Central Nervous System. 2024; 3 (3):206-218.

DOI: 10.5005/jp-journals-11002-0103

License: CC BY-NC 4.0

Published Online: 30-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Background: Globally, neonatal sepsis continues to be a significant cause of neonatal morbidity and mortality. Bedside point-of-care cranial ultrasound (POCUS) can help determine whether the central nervous system (CNS) is affected. It can help evaluate meningitis, brain abscess, changes in the spinal cord, and alterations in cerebral blood flow; it can even provide some clues for early identification of fungal and viral infections. This information can aid in appropriate management. Methods: A comprehensive literature search was conducted to review hallmark POCUS findings in neonatal sepsis with CNS involvement. Further inputs were gathered on understanding the role of these findings in prognosticating and defining the duration of management. Results: The review focused on the classical findings seen on cranial ultrasound, with meningitis in the cerebrum and spinal cord. The complications of meningitis, like ventriculitis, cerebral abscess, and cerebral thrombosis along with other fungal and perinatal infections with their ultrasound findings have been highlighted in this review article. Conclusion: POCUS is a useful bedside screening tool for the diagnosis and management of neonates with meningitis and its complications. Its ease of usage, with safety, and a lesser turnaround time make ultrasound superior to other imaging techniques in neonatal infections.


PDF Share
  1. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: An updated systematic analysis. Lancet 2015;385(9966):430–440. DOI: 10.1016/S0140-6736(14)61698-6.
  2. Reta MA, Zeleke TA. Neonatal bacterial meningitis in Tikur Anbessa Specialized Hospital, Ethiopia: A 10-year retrospective review. Springerplus 2016;5(1):1971. DOI: 10.1186/s40064-016-3668-1.
  3. Furyk JS, Swann O, Molyneux E. Systematic review: Neonatal meningitis in the developing world. Trop Med Int Health 2011;16(6):672–679. DOI: 10.1111/j.1365-3156.2011.02750.x.
  4. Ku LC, Boggess KA, Cohen-Wolkowiez M. Bacterial meningitis in infants. Clin Perinatol 2015;42(1):29–45, vii-viii. DOI: 10.1016/j.clp.2014.10.004.
  5. Gupta N, Grover H, Bansal I, et al. Neonatal cranial sonography: Ultrasound findings in neonatal meningitis-A pictorial review. Quant Imaging Med Surg 2017;7(1):123–131. DOI: 10.21037/qims.2017. 02.01.
  6. Tack DM, Holman RC, Folkema AM, et al. Trends in encephalitis-associated deaths in the United States, 1999-2008. Neuroepidemiology 2014;43(1):1–8. DOI: 10.1159/000362688.
  7. WHO. Meningitis Geneva, Switzerland: World Health Organization; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/meningitis.
  8. Biset S, Benti A, Molla L, et al. Etiology of neonatal bacterial meningitis and their antibiotic susceptibility pattern at the University of Gondar Comprehensive Specialized Hospital, Ethiopia: A seven-year retrospective study. Infect Drug Resist 2021;14:1703–1711. DOI: 10.2147/IDR.S307156.
  9. Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004;39(9):1267–1284. DOI: 10.1086/425368.
  10. Littwin B, Pomiecko A, Stepien-Roman M, et al. Bacterial meningitis in neonates and infants – The sonographic picture. J Ultrason 2018;18(72):63–70. DOI: 10.15557/JoU.2018.0010.
  11. Yikilmaz A, Taylor GA. Sonographic findings in bacterial meningitis in neonates and young infants. Pediatr Radiol 2008;38(2):129–137. DOI: 10.1007/s00247-007-0538-6.
  12. Patel K, Rathore R, Chaudhuri CR. Cranial ultrasonography in evaluation of meningitis in neonates and infants. Int J Contemp Med Surg Radiol 2019;4(4):D87–D90. DOI: 10.21276/ijcmsr.2019.4.4.21.
  13. Mahajan R, Lodha A, Anand R, et al. Cranial sonography in bacterial meningitis. Indian Pediatr 1995;32(9):989–993. PMID: 8935262.
  14. Jequier S, Jequier JC. Sonographic nomogram of the leptomeninges (pia-glial plate) and its usefulness for evaluating bacterial meningitis in infants. AJNR Am J Neuroradiol 1999;20(7):1359–1364. PMID: 10472998.
  15. Han BK, Babcock DS, McAdams L. Bacterial meningitis in infants: Sonographic findings. Radiology 1985154(3):645–650. DOI: 10.1148/radiology.154.3.3881791.
  16. Arrumugham R, Katariya S, Singhi P, et al. Sonography in pyogenic meningitis. Indian Pediatr 1994;31(11):1329–1336. PMID: 7896329.
  17. Kapoor R, Saha MM, Gupta NC. Ultrasonic evaluation of complicated meningitis. Indian Pediatr 1989;26(8):804–808. PMID: 2620982.
  18. Raju VS, Rao MN, Rao VS. Cranial sonography in pyogenic meningitis in neonates and infants. J Trop Pediatr 1995;41(2):68–73. DOI: 10.1093/tropej/41.2.68.
  19. Lowe LH, Bailey Z. State-of-the-art cranial sonography: Part 1, modern techniques and image interpretation. AJR Am J Roentgenol 2011;196(5):1028–1033. DOI: 10.2214/AJR.10.6160.
  20. Nzeh D, Oyinloye OI, Odebode OT, et al. Ultrasound evaluation of brain infections and its complications in Nigerian infants. Trop Doct 2010;40(3):178–180. DOI: 10.1258/td.2010.090384.
  21. Baruah D, Gogoi N, Gogoi R. Ultrasound evaluation of acute bacterial meningitis and its sequale in infants. Indian J Radiol Imaging 2006;16(4):553–558. DOI: 10.4103/0971-3026.32267.
  22. Raghav B, Goulatia RK, Gupta AK, et al. Giant subdural empyema in an infant. Sonographic observations. Neuroradiology 1990;32(2): 154–155. DOI: 10.1007/BF00588567.
  23. Syrogiannopoulos GA, Nelson JD, McCracken GH, Jr. Subdural collections of fluid in acute bacterial meningitis: A review of 136 cases. Pediatr Infect Dis 1986;5(3):343–352. DOI: 10.1097/00006454-198605000-00014.
  24. Chen CY, Huang CC, Chang YC, et al. Subdural empyema in 10 infants: US characteristics and clinical correlates. Radiology 1998;207(3): 609–617. DOI: 10.1148/radiology.207.3.9609881.
  25. Chen CY, Chou TY, Zimmerman RA, et al. Pericerebral fluid collection: Differentiation of enlarged subarachnoid spaces from subdural collections with color Doppler US. Radiology 1996;201(2):389–392. DOI: 10.1148/radiology.201.2.8888229.
  26. Seibert JJ, Avva R, Hronas TN, et al. Use of power Doppler in pediatric neurosonography: A pictorial essay. Radiographics 1998;18(4): 879–890. DOI: 10.1148/radiographics.18.4.9672972.
  27. Berfelo FJ, Kersbergen KJ, van Ommen CH, et al. Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke 2010;41(7):1382–1388. DOI: 10.1161/STROKEAHA.110.583542.
  28. Kochar PS, Sawhney H, Sharma P, et al. Sonographic diagnosis of neonatal cerebral venous sinus thrombosis. J Pediatr Neurol 2020;18(5):236–240. DOI: 10.1055/s-0039-1692216.
  29. Kersbergen KJ, Groenendaal F, Benders MJ, et al. Neonatal cerebral sinovenous thrombosis: Neuroimaging and long-term follow-up. J Child Neurol 2011;26(9):1111–1120. DOI: 10.1177/0883073811408090.
  30. Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child 1981;56(12):900–904. DOI: 10.1136/adc.56.12.900.
  31. Moorthy S, Jayakrishnan VK, Potti NS. Sonographic findings in infantile bacterial meningitis. Indian J Radiol Imag 1992;2(1):111–115.
  32. Edwards MK, Brown DL, Chua GT. Complicated infantile meningitis: Evaluation by real-time sonography. AJNR Am J Neuroradiol 1982;3(4):431–434. PMID: 6810674.
  33. Mactier H, Galea P, McWilliam R. Acute obstructive hydrocephalus complicating bacterial meningitis in childhood. BMJ 1998;316(7148):1887–1889. DOI: 10.1136/bmj.316.7148.1887.
  34. Liao MF, Chaou WT, Tsao LY, et al. Ultrasound measurement of the ventricular size in newborn infants. Brain Dev 1986;8(3):262–268. DOI: 10.1016/s0387-7604(86)80079-1.
  35. Muller WD, Urlesberger B. Correlation of ventricular size and head circumference after severe intra-periventricular haemorrhage in preterm infants. Childs Nerv Syst 1992;8(1):33–35. DOI: 10.1007/BF00316559.
  36. Davies MW, Swaminathan M, Chuang SL, et al. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed 2000;82(3):F218–F223. DOI: 10.1136/fn.82.3.f218.
  37. Sondhi V, Gupta G, Gupta PK, et al. Establishment of nomograms and reference ranges for intra-cranial ventricular dimensions and ventriculo-hemispheric ratio in newborns by ultrasonography. Acta Paediatr 2008;97(6):738–744. DOI: 10.1111/j.1651-2227.2008.00765.x.
  38. Kaiser AM, Whitelaw AG. Cerebrospinal fluid pressure during post haemorrhagic ventricular dilatation in newborn infants. Arch Dis Child 1985;60(10):920–924. DOI: 10.1136/adc.60.10.920.
  39. Sauerbrei EE, Digney M, Harrison PB, et al. Ultrasonic evaluation of neonatal intracranial hemorrhage and its complications. Radiology 1981;139(3):677–685. DOI: 10.1148/radiology.139.3.7232735.
  40. Grasby DC, Esterman A, Marshall P. Ultrasound grading of cerebral ventricular dilatation in preterm neonates. J Paediatr Child Health 2003;39(3):186–190. DOI: 10.1046/j.1440-1754.2003.00108.x.
  41. Govaert P, de Vries LS. An atlas of neonatal brain sonography, 2nd Edition. London, United Kingdom: Mac Keith Press; 2010. p. 10.
  42. Brann BSt, Qualls C, Wells L, et al. Asymmetric growth of the lateral cerebral ventricle in infants with posthemorrhagic ventricular dilation. J Pediatr 1991;118(1):108–112. DOI: 10.1016/s0022-3476(05)81859-1.
  43. Grant EG, Borts FT, Schellinger D, et al. Real-time ultrasonography of neonatal intraventricular hemorrhage and comparison with computed tomography. Radiology 1981;139(3):687–691. DOI: 10.1148/radiology.139.3.7232736.
  44. du Plessis AJ. Posthemorrhagic hydrocephalus and brain injury in the preterm infant: Dilemmas in diagnosis and management. Semin Pediatr Neurol 1998;5(3):161–179. DOI: 10.1016/s1071-9091(98)80032-6.
  45. Saliba E, Bertrand P, Gold F, et al. Area of lateral ventricles measured on cranial ultrasonography in preterm infants: Reference range. Arch Dis Child 1990;65(10 Spec No):1029–1032. DOI: 10.1136/adc.65.10_spec_no.1029.
  46. Chu SM, Hsu JF, Lee CW, et al. Neurological complications after neonatal bacteremia: The clinical characteristics, risk factors, and outcomes. PLoS One 2014;9(11):e105294. DOI: 10.1371/journal.pone.0105294.
  47. Hsu MH, Hsu JF, Kuo HC, et al. Neurological Complications in Young Infants With Acute Bacterial Meningitis. Front Neurol 2018;9:903. DOI: 10.3389/fneur.2018.00903.
  48. Peros T, van Schuppen J, Bohte A, et al. Neonatal bacterial meningitis versus ventriculitis: A cohort-based overview of clinical characteristics, microbiology and imaging. Eur J Pediatr 2020;179(12):1969–1977. DOI: 10.1007/s00431-020-03723-3.
  49. Rosenberg HK, Levine RS, Stoltz K, et al. Bacterial meningitis in infants: Sonographic features. AJNR Am J Neuroradiol 1983;4(3):822–825. PMID: 6410862.
  50. Buchan GC, Alvord EC, Jr. Diffuse necrosis of subcortical white matter associated with bacterial meningitis. Neurology 1969;19(1):1–9. DOI: 10.1212/wnl.19.1.1.
  51. Chowdhary V, Gulati P, Sachdev A, et al. Pyogenic meningitis: Sonographic evaluation. Indian Pediatr 1991;28(7):749–755. PMID: 1800348.
  52. Rudas G, Almassy Z, Papp B, et al. Echodense spinal subarachnoid space in neonates with progressive ventricular dilatation: A marker of noncommunicating hydrocephalus. AJR Am J Roentgenol 1998;171(4):1119–1121. DOI: 10.2214/ajr.171.4.9763007.
  53. Singh A, Abhinay A, Prasad R, et al. Neonatal brain abscess: Clinical report and review of indian cases. J Clin Neonatol 2016;5(3):213–217. DOI: 10.4103/2249-4847.191272.
  54. Anca IA, Jugulete G, Brezan F, et al. Transfontanelar ultrasound diagnosis of brain abscesses in two neonates. Med Ultrason 2009;11(4):77–82.
  55. Bizubac M, Balaci-Miroiu F, Filip C, et al. Neonatal brain abscess with serratia marcescens after intrauterine infection: A case report. Antibiotics (Basel) 2023;12(4). DOI: 10.3390/antibiotics12040722.
  56. Renier D, Flandin C, Hirsch E, et al. Brain abscesses in neonates. A study of 30 cases. J Neurosurg 1988;69(6):877–882. DOI: 10.3171/jns.1988.69.6.0877.
  57. Park HK, Kim YS, Oh SH, etal. Successful treatment with ultrasound-guided aspiration of intractable methicillin-resistant staphylococcus aureus brain abscess in an extremely low birth weight infant. Pediatr Neurosurg 2015;50(4):210–215. DOI: 10.1159/000381749.
  58. Chugh K, Bhalla CK, Joshi KK. Meningococcal brain abscess and meningitis in a neonate. Pediatr Infect Dis J 1988;7(2):136–137. DOI: 10.1097/00006454-198802000-00015.
  59. Yoganathan S, Chakrabarty B, Gulati S, et al. Candida tropicalis brain abscess in a neonate: An emerging nosocomial menace. Ann Indian Acad Neurol 2014;17(4):448–450. DOI: 10.4103/0972-2327.144036.
  60. Ancalle IM, Rivera JA, Garcia I, et al. Candida albicans meningitis and brain abscesses in a neonate: A case report. Bol Asoc Med P R 2010;102(1):45–48. PMID: 20853574.
  61. Marcinkowski M, Bauer K, Stoltenburg-Didinger G, et al. Fungal brain abscesses in neonates: Sonographic appearances and corresponding histopathologic findings. J Clin Ultrasound 2001;29(7):417–421. DOI: 10.1002/jcu.1059.
  62. Enriquez G, Correa F, Aso C, et al. Mastoid fontanelle approach for sonographic imaging of the neonatal brain. Pediatr Radiol 2006;36(6):532–540. DOI: 10.1007/s00247-006-0144-z.
  63. Correa F, Enriquez G, Rossello J, et al. Posterior fontanelle sonography: An acoustic window into the neonatal brain. AJNR Am J Neuroradiol 2004;25(7):1274–1282. PMID: 15313724.
  64. Fumagalli M, Parodi A, Ramenghi L, et al. Ultrasound of acquired posterior fossa abnormalities in the newborn. Pediatr Res 2020;87(Suppl 1):25–36. DOI: 10.1038/s41390-020-0778-9.
  65. Nkwerem SPU, Emejulu JC, Umeh EO, et al. Ultrasound-guided aspiration of intracranial abscess in a tertiary health institution in South-eastern Nigeria: Facing the many challenges of a resource-poor setting. Int J Case Rep Images 2021;12. DOI: 10.5348/101270Z01SN2021CS.
  66. Ratnaparkhi CR, Bayaskar MV, Dhok AP, et al. Utility of Doppler ultrasound in early-onset neonatal sepsis. Indian J Radiol Imaging 2020;30(1):52–58. DOI: 10.4103/ijri.IJRI_265_19.
  67. Basu S, Dewangan S, Shukla RC, et al. Cerebral blood flow velocity in early-onset neonatal sepsis and its clinical significance. Eur J Pediatr 2012;171(6):901–909. DOI: 10.1007/s00431-011-1643-y.
  68. Liu C, Fang C, Shang Y, et al. Transcranial ultrasound diagnostic value of hemodynamic cerebral changes in preterm infants for early-onset sepsis. Transl Pediatr 2022;11(7):1149–1155. DOI: 10.21037/tp- 22-269.
  69. Hashema RH, Abdallaa YE, Mansib YA, et al. Transcranial Doppler evaluation of cerebral hemodynamic alteration in preterms with early onset neonatal sepsis. Artery Res 2017;19(C):83–90. DOI: 10.1016/j.artres.2017.06.004.
  70. Yengkhom R, Suryawanshi P, Murugkar R, et al. Point of care neonatal ultrasound in late-onset neonatal sepsis. J Neonatol 2021;35(2):59–63. DOI: 10.1177/09732179211007599.
  71. Leliefeld PH, Gooskens RH, Peters RJ, et al. New transcranial Doppler index in infants with hydrocephalus: Transsystolic time in clinical practice. Ultrasound Med Biol 2009;35(10):1601–1606. DOI: 10.1016/j.ultrasmedbio.2009.04.024.
  72. Goodkin HP, Harper MB, Pomeroy SL. Intracerebral abscess in children: historical trends at Children's Hospital Boston. Pediatrics 2004;113(6):1765–1770. DOI: 10.1542/peds.113.6.1765.
  73. Chapman RL. Candida infections in the neonate. Curr Opin Pediatr 2003;15(1):97–102. DOI: 10.1097/00008480-200302000-00016.
  74. Leibovitz E. Neonatal candidiasis: Epidemiologic, clinical and therapeutic aspects. Infect Med 2003;20(1):494–498.
  75. Raman Sharma R. Fungal infections of the nervous system: Current perspective and controversies in management. Int J Surg 2010;8(8):591–601. DOI: 10.1016/j.ijsu.2010.07.293.
  76. Pahud BA, Greenhow TL, Piecuch B, et al. Preterm neonates with candidal brain microabscesses: A case series. J Perinatol 2009;29(4):323–326. DOI: 10.1038/jp.2008.201.
  77. Stegmann BJ, Carey JC. TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Curr Womens Health Rep 2002;2(4): 253–258. PMID: 12150751.
  78. Megli CJ, Coyne CB. Infections at the maternal–fetal interface: An overview of pathogenesis and defence. Nat Rev Microbiol 2022;20(2):67–82. DOI: 10.1038/s41579-021-00610-y.
  79. Nickerson JP, Richner B, Santy K, et al. Neuroimaging of pediatric intracranial infection–part 1: Techniques and bacterial infections. J Neuroimaging 2012;22(2):e42–e51. DOI: 10.1111/j.1552-6569. 2011.00700.x.
  80. Lucignani G, Guarnera A, Rossi-Espagnet MC, et al. From fetal to neonatal neuroimaging in TORCH infections: A pictorial review. Children (Basel) 2022;9(8):1210. DOI: 10.3390/children9081210.
  81. Escobar Castellanos M, de la Mata Navazo S, Carrón Bermejo M, et al. Association between neuroimaging findings and neurological sequelae in patients with congenital cytomegalovirus infection. Neurología (Barc, Ed impr) 2022;37(2):122–129. DOI: 10.1016/j.nrl.2018.11.003.
  82. Alarcón A, Martinez-Biarge M, Cabanas F, et al. Clinical, biochemical, and neuroimaging findings predict long-term neurodevelopmental outcome in symptomatic congenital cytomegalovirus infection. J Pediatr 2013;163(3):828–834.e1. DOI: 10.1016/j.jpeds.2013.03.014.
  83. Noyola DE, Demmler GJ, Nelson CT, et al. Early predictors of neurodevelopmental outcome in symptomatic congenital cytomegalovirus infection. J Pediatr 2001;138(3):325–331. DOI: 10.1067/mpd.2001.112061.
  84. Kwak M, Yum MS, Yeh HR, et al. Brain magnetic resonance imaging findings of congenital cytomegalovirus infection as a prognostic factor for neurological outcome. Pediatr Neurol 2018;83:14–18. DOI: 10.1016/j.pediatrneurol.2018.03.008.
  85. Nijman J, de Vries LS, Koopman-Esseboom C, et al. Postnatally acquired cytomegalovirus infection in preterm infants: A prospective study on risk factors and cranial ultrasound findings. Arch Dis Child Fetal Neonatal Ed 2012;97(4):F259–F263. DOI: 10.1136/archdischild- 2011-300405.
  86. Malinger G, Lev D, Lerman-Sagie T. Imaging of fetal cytomegalovirus infection. Fetal Diagn Ther 2011;29(2):117–126. DOI: 10.1159/000321346.
  87. Amir J, Schwarz M, Levy I, et al. Is lenticulostriated vasculopathy a sign of central nervous system insult in infants with congenital CMV infection? Arch Dis Child 2011;96(9):846–850. DOI: 10.1136/adc.2010.208405.
  88. Bajaj M, Mody S, Natarajan G. Clinical and neuroimaging findings in neonatal herpes simplex virus infection. J Pediatr 2014;165(2): 404–407 e1. DOI: 10.1016/j.jpeds.2014.04.046.
  89. Pelligra G, Lynch N, Miller SP, et al. Brainstem involvement in neonatal herpes simplex virus type 2 encephalitis. Pediatrics 2007;120(2): e442–e446. DOI: 10.1542/peds.2006-3757.
  90. Okanishi T, Yamamoto H, Hosokawa T, et al. Diffusion-weighted MRI for early diagnosis of neonatal herpes simplex encephalitis. Brain Dev 2015;37(4):423–431. DOI: 10.1016/j.braindev.2014.07.006.
  91. de Vries LS. Viral infections and the neonatal brain. Semin Pediatr Neurol 2019;32:100769. DOI: 10.1016/j.spen.2019.08.005.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.