A Care-bundle to Prevent Germinal Matrix–Intraventricular Hemorrhage in Neonates
The LAYA Group of the Global Newborn Society, Aimen E Ben Ayad
Keywords :
Antenatal corticosteroids, Delayed cord clamping, Germinal matrix-intraventricular hemorrhage care-bundle, Golden hour, Implementation science, Institute of health care improvement, Neonate, Newborn, Periventricular hemorrhage, Tocolytics
Citation Information :
The LAYA Group of the Global Newborn Society, Ayad AE. A Care-bundle to Prevent Germinal Matrix–Intraventricular Hemorrhage in Neonates. 2024; 3 (3):157-179.
Germinal matrix-intraventricular hemorrhages (GM-IVHs) can be seen in up to 25–30% of premature infants. These are associated with a major psychological, social, and financial challenge for care-providers and families caring for premature infants all over the world. The severity is usually classified based on the location and volume vis-à-vis that of the cerebral ventricles, including (A) Grade I GM-IVHs localized in the germinal matrix; (B and C) Grade II and III hemorrhages occupying less than and more than 50% of the ventricular cavities, respectively; and (D) Grade IV IVHs that extend into the surrounding parenchyma with/without a periventricular hemorrhagic infarction (PVH). Germinal matrix-intraventricular hemorrhages have been associated with impaired neurodevelopment (17.5%), static physical disabilities in cerebral palsy (7–63%), deafness (8.6%), and blindness (2.2%). Considering the complex etiopathogenesis of GM-IVH and the fact that most of these events occur within a temporally-delimited period of the first 72 hours after birth, there is increasing interest in the structured application of 3–5 well-accepted preventive measures as a quality improvement (QI) “care bundle” during the high-risk period. In this article, we have described the evidence on which our GM-IVH bundle is based. We have carefully evaluated antenatal factors such as the history of having received steroids and magnesium sulfate, perinatal measures such as delayed cord clamping, management of thrombocytopenia and/or coagulopathy, and postnatal measures such as maintaining a midline head position, cautious endotracheal suctioning and blood withdrawals, and avoidance of routine flushing of intravenous and arterial lines. Based on the strongest evidence and practice consensus, we have adopted a 4-point bundle to prevent GM-IVH in premature infants: (A) Appropriate neonatal resuscitation with, if possible, delayed cord clamping; (B) Golden-hour care; (C) Gentle care of outborn infants including safe transport and avoiding hemodynamic instability; and (D) if needed, management of perinatal thrombocytopenia and coagulopathy. In the next 3–5 years, we will report compliance and changes in the incidence/severity of GM-IVH at our centers.
Egesa WI, Odoch S, Odong RJ, et al. Germinal matrix-intraventricular hemorrhage: A tale of preterm infants. Int J Pediatr 2021;2021:6622598. DOI: 10.1155/2021/6622598.
Gilard V, Tebani A, Bekri S, et al. Intraventricular hemorrhage in very preterm infants: A comprehensive review. J Clin Med 2020;9(8):2447. DOI: 10.3390/jcm9082447.
Parodi A, Govaert P, Horsch S, et al. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res 2020;87(Suppl 1):13–24. DOI: 10.1038/s41390-020-0780-2.
Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol 2014;41(1):47–67. DOI: 10.1016/j.clp.2013.09.007.
Park YS. Perspectives: Understanding the pathophysiology of intraventricular hemorrhage in preterm infants and considering of the future direction for treatment. J Korean Neurosurg Soc 2023;66(3):298–307. DOI: 10.3340/jkns.2023.0020.
Siffel C, Kistler KD, Sarda SP. Global incidence of intraventricular hemorrhage among extremely preterm infants: A systematic literature review. J Perinat Med 202;49(9):1017–1026. DOI: 10.1515/jpm-2020-0331.
Kim KR, Jung SW, Kim DW. Risk factors associated with germinal matrix-intraventricular hemorrhage in preterm neonates. J Korean Neurosurg Soc 2014;56(4):334–337. DOI: 10.3340/jkns.2014.56.4.334.
Linder N, Haskin O, Levit O, et al. Risk factors for intraventricular hemorrhage in very low birth weight premature infants: A retrospective case-control study. Pediatrics 2003;111(5 Pt 1):e590–e595. DOI: 10.1542/peds.111.5.e590.
IHI-Team. What is a bundle? Boston, MA, USA: Institute for Healthcare Improvement. 2012. Available from: https://www.ihi.org/insights/what-bundle.
Glass HC, Costarino AT, Stayer SA, et al. Outcomes for extremely premature infants. Anesth Analg 2015;120(6):1337–1351. DOI: 10.1213/ANE.0000000000000705.
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 2015;314(10):1039–1051. DOI: 10.1001/jama.2015.10244.
Shenoy A. Patient safety from the perspective of quality management frameworks: A review. Patient Saf Surg 2021;15(1):12. DOI: 10.1186/s13037-021-00286-6.
IHI-Team. Join Us at IHI Forum 2024 Boston, MA, USA: Institute for Healthcare Improvement. 2024. Available from: https://www.ihi.org/.
Resar R, Griffin FA, Haraden C, et al. Using care bundles to improve health care quality. IHI innovation Series white paper Cambridge, MA, USA: Institute for Healthcare Improvement. 2012. Available from: https://www.ihi.org/resources/white-papers/using-care-bundles-improve-health-care-quality.
Paul N, Knauthe AC, Ribet Buse E, et al. Use of patient-relevant outcome measures to assess the long-term effects of care bundles in the ICU: A scoping review protocol. BMJ Open 2022;12(2):e058314. DOI: 10.1136/bmjopen-2021-058314.
Horner DL, Bellamy MC. Care bundles in intensive care. Continuing Educ Anaesth Crit Care Pain 2012;12(4):199–202. DOI: 10.1093/bjaceaccp/mks021.
Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 2004;56(1):117–124. DOI: 10.1203/01.PDR.0000130472.30874.FF.
Andersson EA, Rocha-Ferreira E, Hagberg H, et al. Function and biomarkers of the blood-brain barrier in a neonatal germinal matrix haemorrhage model. Cells 2021;10(7):1677. DOI: 10.3390/cells10071677.
Towbin A. Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol 1968;52(1):121–140. PMID: 5634505.
You SK. Neuroimaging of germinal matrix and intraventricular hemorrhage in premature infants. J Korean Neurosurg Soc 2023;66(3):239–246. DOI: 10.3340/jkns.2022.0277.
Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92(4):529–534. DOI: 10.1016/s0022-3476(78)80282-0.
Kuban K, Teele RL. Rationale for grading intracranial hemorrhage in premature infants. Pediatrics 1984;74(3):358–363. PMID: 6472968.
Lim J, Hagen E. Reducing germinal matrix-intraventricular hemorrhage: perinatal and delivery room factors. Neoreviews 2019;20(8):e452–e463. DOI: 10.1542/neo.20-8-e452.
Volpe JJ. Intraventricular hemorrhage in the premature infant–current concepts. Part I. Ann Neurol 1989;25(1):3–11. DOI: 10.1002/ana.410250103.
Persidsky Y, Ramirez SH, Haorah J, et al. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006;1(3):223–236. PMID: 18040800. DOI: 10.1007/s11481-006-9025-3.
Armulik A, Genove G, Mae M, et al. Pericytes regulate the blood-brain barrier. Nature 2010;468(7323):557–561. DOI: 10.1038/nature09522.
Goldenberg RL, Culhane JF, Iams JD, et al. Epidemiology and causes of preterm birth. Lancet 2008;371(9606):75–84. DOI: 10.1016/S0140-6736(08)60074-4.
Siegler Y, Weiner Z, Solt I. ACOG Practice Bulletin No. 217: Prelabor rupture of membranes. Obstet Gynecol 2020;136(5):1061. DOI: 10.1097/AOG.0000000000004142.
Moore RM, Mansour JM, Redline RW, et al. The physiology of fetal membrane rupture: Insight gained from the determination of physical properties. Placenta 2006;27(11-12):1037–1051. DOI: 10.1016/j.placenta.2006.01.002.
Romero R, Friel LA, Velez Edwards DR, et al. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM). Am J Obstet Gynecol 2010;203(4):361 e1–361 e30. DOI: 10.1016/j.ajog.2010.05.026.
Mercer JS, Erickson-Owens DA, Vohr BR, et al. Effects of placental transfusion on neonatal and 18 month outcomes in preterm infants: A randomized controlled trial. J Pediatr 2016;168:50–55 e1. DOI: 10.1016/j.jpeds.2015.09.068.
Ovalle A, Romero R, Gomez R, et al. Antibiotic administration to patients with preterm labor and intact membranes: Is there a beneficial effect in patients with endocervical inflammation? J Matern Fetal Neonatal Med 2006;19(8):453–464. DOI: 10.1080/14767050600852668.
DiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 2010;64(1):38–57. DOI: 10.1111/j.1600-0897.2010.00830.x.
Chang KH, Kim HJ, Yu HJ, et al. Comparison of antibiotic regimens in preterm premature rupture of membranes: Neonatal morbidity and 2-year follow-up of neurologic outcome. J Matern Fetal Neonatal Med 2017;30(18):2212–2218. DOI: 10.1080/14767058.2016.1243097.
Razak A, Patel W, Durrani NUR, et al. Interventions to reduce severe brain injury risk in preterm neonates: A systematic review and meta-analysis. JAMA Netw Open 2023;6(4):e237473. DOI: 10.1001/jamanetworkopen.2023.7473.
Lee J, Romero R, Kim SM, et al. A new anti-microbial combination prolongs the latency period, reduces acute histologic chorioamnionitis as well as funisitis, and improves neonatal outcomes in preterm PROM. J Matern Fetal Neonatal Med 2016;29(5):707–720. DOI: 10.3109/14767058.2015.1020293.
Korcek P, Sirc J, Berka I, et al. Does perinatal management have the potential to reduce the risk of intraventricular hemorrhage in preterm infants? Front Pediatr 2024;12:1361074. DOI: 10.3389/fped.2024.1361074.
McGoldrick E, Stewart F, Parker R, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2020;12(12):CD004454. DOI: 10.1002/14651858.CD004454.pub4.
Vinukonda G, Dummula K, Malik S, et al. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke 2010;41(8):1766–1773. DOI: 10.1161/STROKEAHA.110.588400.
Helwich E, Rutkowska M, Bokiniec R, et al. Intraventricular hemorrhage in premature infants with Respiratory Distress Syndrome treated with surfactant: Incidence and risk factors in the prospective cohort study. Dev Period Med 2017;21(4):328–335. DOI: 10.34763/devperiodmed.20172104.328335.
Williams MJ, Ramson JA, Brownfoot FC. Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth. Cochrane Database Syst Rev 2022;8(8):CD006764. DOI: 10.1002/14651858.CD006764.pub4.
Walters A, McKinlay C, Middleton P, et al. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev 2022;4(4):CD003935. DOI: 10.1002/14651858.CD003935.pub5.
Blankenship SA, Brown KE, Simon LE, et al. Antenatal corticosteroids in preterm small-for-gestational age infants: A systematic review and meta-analysis. Am J Obstet Gynecol MFM 2020;2(4):100215. DOI: 10.1016/j.ajogmf.2020.100215.
Elimian A, Verma R, Ogburn P, et al. Magnesium sulfate and neonatal outcomes of preterm neonates. J Matern Fetal Neonatal Med 2002;12(2):118–122. DOI: 10.1080/jmf.12.2.118.122.
Mittendorf R, Dambrosia J, Pryde PG, et al. Association between the use of antenatal magnesium sulfate in preterm labor and adverse health outcomes in infants. Am J Obstet Gynecol 2002;186(6):1111–1118. DOI: 10.1067/mob.2002.123544.
Golan H, Kashtuzki I, Hallak M, et al. Maternal hypoxia during pregnancy induces fetal neurodevelopmental brain damage: partial protection by magnesium sulfate. J Neurosci Res 2004;78(3):430–441. DOI: 10.1002/jnr.20269.
Gulczynska E, Gadzinowski J, Wilczynski J, et al. Prenatal MgSO4 treatment modifies the erythrocyte band 3 in preterm neonates. Pharmacol Res 2006;53(4):347–352. DOI: 10.1016/j.phrs.2006. 01.002.
Moradi Y, Khateri R, Haghighi L, et al. The effect of antenatal magnesium sulfate on intraventricular hemorrhage in premature infants: A systematic review and meta-analysis. Obstet Gynecol Sci 2020;63(4):395–406. DOI: 10.5468/ogs.19210.
Ayed M, Ahmed J, More K, et al. Antenatal magnesium sulfate for preterm neuroprotection: A single-center experience from kuwait tertiary NICU. Biomed Hub 2022;7(2):80–87. DOI: 10.1159/000525431.
Jung EJ, Byun JM, Kim YN, et al. Antenatal magnesium sulfate for both tocolysis and fetal neuroprotection in premature rupture of the membranes before 32 weeks’ gestation. J Matern Fetal Neonatal Med 2018;31(11):1431–1441. DOI: 10.1080/14767058.2017.1317743.
Medley N, Poljak B, Mammarella S, et al. Clinical guidelines for prevention and management of preterm birth: A systematic review. BJOG 2018125(11):1361–1369. DOI: 10.1111/1471-0528.15173.
de Heus R, Mulder EJ, Visser GH. Management of preterm labor: Atosiban or nifedipine? Int J Womens Health 2010;2:137–142. DOI: 10.2147/ijwh.s7219.
Doni D, Paterlini G, Locatelli A, et al. Effects of antenatal indomethacin on ductus arteriosus early closure and on adverse outcomes in preterm neonates. J Matern Fetal Neonatal Med 2020;33(4):645–650. DOI: 10.1080/14767058.2018.1499091.
Hammers AL, Sanchez-Ramos L, Kaunitz AM. Antenatal exposure to indomethacin increases the risk of severe intraventricular hemorrhage, necrotizing enterocolitis, and periventricular leukomalacia: A systematic review with metaanalysis. Am J Obstet Gynecol 2015;212(4):505 e1–e13. DOI: 10.1016/j.ajog.2014.10.1091.
Pinto Cardoso G, Houivet E, Marchand-Martin L, et al. Association of intraventricular hemorrhage and death with tocolytic exposure in preterm infants. JAMA Netw Open 2018;1(5):e182355. DOI: 10.1001/jamanetworkopen.2018.2355.
Nijman TAJ, Goedhart MM, Naaktgeboren CN, et al. Effect of nifedipine and atosiban on perinatal brain injury: Secondary analysis of the APOSTEL-III trial. Ultrasound Obstet Gynecol 2018;51(6):806–812. DOI: 10.1002/uog.17512.
Weintraub Z, Solovechick M, Reichman B, et al. Effect of maternal tocolysis on the incidence of severe periventricular/intraventricular haemorrhage in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2001;85(1):F13–F17. DOI: 10.1136/fn.85.1.f13.
Neilson JP, West HM, Dowswell T. Betamimetics for inhibiting preterm labour. Cochrane Database Syst Rev 2014;2014(2):CD004352. DOI: 10.1002/14651858.CD004352.pub3.
Canadian Preterm Labor Investigators Group. Treatment of preterm labor with the beta-adrenergic agonist ritodrine. N Engl J Med 1992;327(5):308–312. DOI: 10.1056/NEJM199207303270503.
Coler BS, Shynlova O, Boros-Rausch A, et al. Landscape of preterm birth therapeutics and a path forward. J Clin Med 2021;10(13):2912. DOI: 10.3390/jcm10132912.
Katheria AC, Brown MK, Faksh A, et al. Delayed cord clamping in newborns born at term at risk for resuscitation: A feasibility randomized clinical trial. J Pediatr 2017;187:313–317 e1. DOI: 10.1016/j.jpeds.2017.04.033.
Hubner ME, Ramirez R, Burgos J, et al. Mode of delivery and antenatal steroids and their association with survival and severe intraventricular hemorrhage in very low birth weight infants. J Perinatol 2016;36(10):832–836. DOI: 10.1038/JP.2016.78.
American College of O, Gynecologists, Society for Maternal-Fetal Medicine. Obstetric Care consensus No. 6: Periviable Birth. Obstet Gynecol 2017;130(4):e187–e199. DOI: 10.1097/AOG.00000000 00002352.
Karayel Eroglu H, Gulasi S, Mert MK, et al. Relationship between the mode of delivery, morbidity and mortality in preterm infants. J Trop Pediatr 2022;68(6):fmac074. DOI: 10.1093/tropej/fmac074.
Humberg A, Hartel C, Paul P, et al. Delivery mode and intraventricular hemorrhage risk in very-low-birth-weight infants: Observational data of the German Neonatal Network. Eur J Obstet Gynecol Reprod Biol 2017;212:144–149. DOI: 10.1016/j.ejogrb.2017.03.032.
Huang YY, Chang JH, Chen CH, et al. Association of mode of delivery with short-term and neurodevelopmental outcomes in periviable singleton infants: A nationwide database study. Int J Gynaecol Obstet 2023;163(1):307–314. DOI: 10.1002/ijgo.14833.
Rahman S, Ullah M, Ali A, et al. Fetal outcomes in preterm cesarean sections. Cureus 2022;14(8):e27607. DOI: 10.7759/cureus.27607.
Ljustina S, Berisavac II, Berisavac M, et al. Analysis of intracranial hemorrhage grade in preterm singleton pregnancies delivered vaginally or by cesarean section. Vojnosanit Pregl 2013;70(3):255–258. DOI: 10.2298/vsp1303255l.
Luca A, Vinturache A, Ilea C, et al. Birth trauma in preterm spontaneous vaginal and cesarean section deliveries: A 10-years retrospective study. PLoS One 2022;17(10):e0275726. DOI: 10.1371/journal.pone.0275726.
Song D, Jegatheesan P, DeSandre G, et al. Duration of cord clamping and neonatal outcomes in very preterm infants. PLoS One 2015;10(9):e0138829. DOI: 10.1371/journal.pone.0138829.
Mascola MA, Porter TF, Tin-May Chao T, et al. Delayed umbilical cord clamping after birth. Washington, DC, USA: American College of Obstetricians and Gynecologists. 2023. Available from: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/12/delayed-umbilical-cord-clamping-after-birth.
Rabe H, Gyte GM, Diaz-Rossello JL, et al. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev 2019;9(9):CD003248. DOI: 10.1002/14651858.CD003248.pub4.
Chiruvolu A, Tolia VN, Qin H, et al. Effect of delayed cord clamping on very preterm infants. Am J Obstet Gynecol 2015;213(5):676. e1–e7. DOI: 10.1016/j.ajog.2015.07.016.
Fenton C, McNinch NL, Bieda A, et al. Clinical outcomes in preterm infants following institution of a delayed umbilical cord clamping practice change. Adv Neonatal Care 2018;18(3):223–231. DOI: 10.1097/ANC.0000000000000492.
Elimian A, Goodman J, Escobedo M, et al. Immediate compared with delayed cord clamping in the preterm neonate: A randomized controlled trial. Obstet Gynecol 2014;124(6):1075–1079. DOI: 10.1097/AOG.0000000000000556.
Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 2010;90(4):1291–1335. DOI: 10.1152/physrev.00032.2009.
Strauss RG, Mock DM, Johnson KJ, et al. A randomized clinical trial comparing immediate versus delayed clamping of the umbilical cord in preterm infants: Short-term clinical and laboratory endpoints. Transfusion 2008;48(4):658–665. DOI: 10.1111/j.1537-2995.2007.01589.x.
Hofmeyr GJ, Bolton KD, Bowen DC, et al. Periventricular/intraventricular haemorrhage and umbilical cord clamping. Findings and hypothesis. S Afr Med J 1988;73(2):104–106. PMID: 3340910.
Fogarty M, Osborn DA, Askie L, et al. Delayed vs early umbilical cord clamping for preterm infants: A systematic review and meta-analysis. Am J Obstet Gynecol 2018;218(1):1–18. DOI: 10.1016/j.ajog.2017.10.231.
Madar J, Roehr CC, Ainsworth S, et al. European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth. Resuscitation 2021;161:291–326. DOI: 10.1016/j.resuscitation.2021.02.014.
Aladangady N, McHugh S, Aitchison TC, et al. Infants’ blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics 2006;117(1):93–98. DOI: 10.1542/peds.2004-1773.
Vesoulis ZA, Liao SM, Mathur AM. Delayed cord clamping is associated with improved dynamic cerebral autoregulation and decreased incidence of intraventricular hemorrhage in preterm infants. J Appl Physiol (1985) 2019;127(1):103–110. DOI: 10.1152/japplphysiol.00049.2019.
Bhatt S, Polglase GR, Wallace EM, et al. Ventilation before umbilical cord clamping improves the physiological transition at birth. Front Pediatr 2014;2:113. DOI: 10.3389/fped.2014.00113.
Dipak NK, Nanavat RN, Kabra NK, et al. Effect of delayed cord clamping on hematocrit, and thermal and hemodynamic stability in preterm neonates: A randomized controlled trial. Indian Pediatr 2017;54(2):112–115. DOI: 10.1007/s13312-017-1011-8.
Duley L, Dorling J, Pushpa-Rajah A, et al. Randomised trial of cord clamping and initial stabilisation at very preterm birth. Arch Dis Child Fetal Neonatal Ed 2018;103(1):F6–F14. DOI: 10.1136/archdischild-2016-312567.
Badiee Z, Naseri F, Sadeghnia A. Early versus delayed initiation of nasal continuous positive airway pressure for treatment of respiratory distress syndrome in premature newborns: A randomized clinical trial. Adv Biomed Res 2013;2:4. DOI: 10.4103/2277-9175.107965.
Reis JS, Pereira IA, Lira J, et al. Intraventricular hemorrhage in preterm infants: Risk factors and neurodevelopmental outcomes. J Pediatr Neonatal Individual Med 2023;12(1):e120118. DOI: 10.7363/120118.
Tamai K, Matsumoto N, Yorifuji T, et al. Delivery room intubation and severe intraventricular hemorrhage in extremely preterm infants without low Apgar scores: A Japanese retrospective cohort study. Sci Rep 2023;13(1):14990. DOI: 10.1038/s41598-023-41010-x.
Ferreira DM, Girao ALA, AVS ES, et al. Application of a bundle in the prevention of peri-intraventricular hemorrhage in preterm newborns. J Perinat Neonatal Nurs 2020;34(2):E5–E11. DOI: 10.1097/JPN.0000000000000482.
Reuter S, Messier S, Steven D. The neonatal Golden Hour--intervention to improve quality of care of the extremely low birth weight infant. S D Med 2014;67(10):397–403, 405. PMID: 25423766.
Peleg B, Globus O, Granot M, et al. “Golden Hour” quality improvement intervention and short-term outcome among preterm infants. J Perinatol 2019;39(3):387–392. DOI: 10.1038/s41372-018-0254-0.
Harriman TL, Carter B, Dail RB, et al. Golden hour protocol for preterm infants: A quality improvement project. Adv Neonatal Care 2018;18(6):462–470. DOI: 10.1097/ANC.0000000000000554.
Moore CM, O'Reilly D, McCallion N, et al. Changes in inflammatory proteins following platelet transfusion in a neonatal population. Pediatr Res 2023;94(6):1973–1977. DOI: 10.1038/s41390-023-02731-x.
Castrodale V, Rinehart S. The golden hour: improving the stabilization of the very low birth-weight infant. Adv Neonatal Care 2014;14(1):9–14; quiz 15–6. DOI: 10.1097/ANC.0b013e31828d0289.
Lerner EB, Moscati RM. The golden hour: Scientific fact or medical “urban legend”? Acad Emerg Med 2001;8(7):758–760. DOI: 10.1111/j.1553-2712.2001.tb00201.x.
Ashmeade TL, Haubner L, Collins S, et al. Outcomes of a neonatal golden hour implementation project. Am J Med Qual 2016;31(1):73–80. DOI: 10.1177/1062860614548888.
Lapcharoensap W, Lee HC. Tackling quality improvement in the delivery room. Clin Perinatol 2017;44(3):663–681. DOI: 10.1016/j.clp.2017.05.003.
Pan S, Jiang S, Lin S, et al. Outcome of very preterm infants delivered outside tertiary perinatal centers in China: A multi-center cohort study. Transl Pediatr 2021;10(2):306–314. DOI: 10.21037/tp-20-232.
Mohamed MA, Aly H. Transport of premature infants is associated with increased risk for intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed 2010;95(6):F403–F407. DOI: 10.1136/adc.2010.183236.
Thorp JA, Jones PG, Clark RH, et al. Perinatal factors associated with severe intracranial hemorrhage. Am J Obstet Gynecol 2001;185(4):859–862. DOI: 10.1067/mob.2001.117355.
Towers CV, Bonebrake R, Padilla G, et al. The effect of transport on the rate of severe intraventricular hemorrhage in very low birth weight infants. Obstet Gynecol 2000;95(2):291–295. DOI: 10.1016/s0029-7844(99)00528-1.
Gleissner M, Jorch G, Avenarius S. Risk factors for intraventricular hemorrhage in a birth cohort of 3721 premature infants. J Perinat Med 2000;28(2):104–110. DOI: 10.1515/JPM.2000.013.
Amer R, Moddemann D, Seshia M, et al. Neurodevelopmental outcomes of infants born at <29 weeks of gestation admitted to Canadian Neonatal Intensive Care Units based on location of birth. J Pediatr 2018;196:31–37 e1. DOI: 10.1016/j.jpeds.2017.11.038.
Lee HC, Ho QT, Rhine WD. A quality improvement project to improve admission temperatures in very low birth weight infants. J Perinatol 2008;28(11):754–758. DOI: 10.1038/jp.2008.92.
Laptook AR, Salhab W, Bhaskar B, et al. Admission temperature of low birth weight infants: Predictors and associated morbidities. Pediatrics 2007;119(3):e643–e649. DOI: 10.1542/peds.2006-0943.
Gupta N, Shipley L, Goel N, et al. Neurocritical care of high-risk infants during inter-hospital transport. Acta Paediatr 2019;108(11):1965–1971. DOI: 10.1111/apa.14940.
Shlossman PA, Manley JS, Sciscione AC, et al. An analysis of neonatal morbidity and mortality in maternal (in utero) and neonatal transports at 24–34 weeks’ gestation. Am J Perinatol 1997;14(8):449–456. DOI: 10.1055/s-2007-994178.
Jagarapu J, Kapadia V, Mir I, et al. TeleNICU: Extending the reach of level IV care and optimizing the triage of patient transfers. J Telemed Telecare 2024;30(1):165–172. DOI: 10.1177/1357633X211038153.
Yoo BK, Yang NH, Hoffman K, et al. Economic evaluation of telemedicine consultations to reduce unnecessary neonatal care transfers. J Pediatr 2022;244:58–63. e1. DOI: 10.1016/j.jpeds.2021.11.076.
Bailey V, Szyld E, Cagle K, et al. Modern neonatal transport: sound and vibration levels and their impact on physiological stability. Am J Perinatol 2019;36(4):352–359. DOI: 10.1055/s-0038-1668171.
Singh TS, Skelton H, Baird J, et al. Improvement in thermoregulation outcomes following the implementation of a thermoregulation bundle for preterm infants. J Paediatr Child Health 2022;58(7):1201–1208. DOI: 10.1111/jpc.15949.
McCarthy LK, O'Donnell CPF. Comparison of rectal and axillary temperature measurements in preterm newborns. Arch Dis Child Fetal Neonatal Ed 2021;106(5):509–513. DOI: 10.1136/archdischild-2020-320627.
Fukuyama T, Arimitsu T. Use of access port covers in transport incubators to improve thermoregulation during neonatal transport. Sci Rep 2023;13(1):3132. DOI: 10.1038/s41598-023-30142-9.
Chawla S, Amaram A, Gopal SP, et al. Safety and efficacy of Trans-warmer mattress for preterm neonates: Results of a randomized controlled trial. J Perinatol 2011;31(12):780–784. DOI: 10.1038/jp.2011.33.
Kyokan M, Rosa-Mangeret F, Gani M, et al. Neonatal warming devices: What can be recommended for low-resource settings when skin-to-skin care is not feasible? Front Pediatr 2023;11:1171258. DOI: 10.3389/fped.2023.1171258.
de Almeida MF, Guinsburg R, Sancho GA, et al. Hypothermia and early neonatal mortality in preterm infants. J Pediatr 2014;164(2):271–275. e1. DOI: 10.1016/j.jpeds.2013.09.049.
Mathew B, Lakshminrusimha S, Sengupta S, et al. Randomized controlled trial of vinyl bags versus thermal mattress to prevent hypothermia in extremely low-gestational-age infants. Am J Perinatol 2013;30(4):317–322. DOI: 10.1055/s-0032-1324700.
McGrory L, Owen LS, Thio M, et al. A Randomized trial of conditioned or unconditioned gases for stabilizing preterm infants at birth. J Pediatr 2018;193:47–53. DOI: 10.1016/j.jpeds.2017.09.006.
Cuervo R, Rodriguez-Lazaro MA, Farre R, et al. Low-cost and open-source neonatal incubator operated by an Arduino microcontroller. HardwareX 2023;15:e00457. DOI: 10.1016/j.ohx.2023.e00457.
Urakura AK, Gajula R, Kankanala GR, et al. Effect of Neonatal Intensive Care Unit (NICU) humidity on neonates: A systematic review. Cureus 2024;16(4):e58524. DOI: 10.7759/cureus.58524.
Bhuiya NA, Liu S, Muyodi D, et al. Feasibility and acceptability of a novel biomedical device to prevent neonatal hypothermia and augment Kangaroo Mother Care in Kenya: Qualitative analysis of focus group discussions and key Informant Interviews. PLOS Glob Public Health 2024;4(4):e0001708. DOI: 10.1371/journal.pgph.0001708.
Abiramalatha T, Ramaswamy VV, Bandyopadhyay T, et al. Delivery room interventions for hypothermia in preterm neonates: A systematic review and network meta-analysis. JAMA Pediatr 2021;175(9):e210775. DOI: 10.1001/jamapediatrics.2021.0775.
Doglioni N, Cavallin F, Mardegan V, et al. Total body polyethylene wraps for preventing hypothermia in preterm infants: A randomized trial. J Pediatr 2014;165(2):261–266. e1. DOI: 10.1016/j.jpeds.2014. 04.010.
McCarthy LK, Molloy EJ, Twomey AR, et al. A randomized trial of exothermic mattresses for preterm newborns in polyethylene bags. Pediatrics 2013;132(1):e135–e141. DOI: 10.1542/peds.2013-0279.
Possidente ALC, Bazan IGM, Machado HC, et al. Evaluation of two polyethylene bags in preventing admission hypothermia in preterm infants: A quasi-randomized clinical trial. J Pediatr (Rio J) 2023;99(5):514–520. DOI: 10.1016/j.jped.2023.04.004.
Brophy H, Tan GM, Yoxall CW. Very low birth weight outcomes and admission temperature: Does hyperthermia matter? Children (Basel) 2022;9(11). DOI: 10.3390/children9111706.
McCall EM, Alderdice F, Halliday HL, et al. Interventions to prevent hypothermia at birth in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2018;2(2):CD004210. DOI: 10.1002/14651858.CD004210.pub5.
Zhao Y, Bergmann JHM. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: A systematic review. Sensors (Basel) 2023;23(17):7439. DOI: 10.3390/s23177439.
Almadhoob A, Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst Rev 2020;1(1):CD010333. DOI: 10.1002/14651858.CD010333.pub3.
Rhee CJ, da Costa CS, Austin T, et al. Neonatal cerebrovascular autoregulation. Pediatr Res 2018;84(5):602–610. DOI: 10.1038/s41390-018-0141-6.
Vesoulis ZA, Mathur AM. Cerebral autoregulation, brain injury, and the transitioning premature infant. Front Pediatr 2017;5:64. DOI: 10.3389/fped.2017.00064.
Bethou A, Bhat BV. Gentle handling of fragile preterm for better outcome. Int J Adv Med Health Res 2015;2(2):77–79. DOI: 10.4103/2349-4220.172879.
Fernández-Zacarías F, Puyana-Romero V, Hernández-Molina R. The importance of noise attenuation levels in neonatal incubators. Acoustics 2022;4(4):821–833. DOI: 10.3390/acoustics4040049.
Gajendragadkar G, Boyd JA, Potter DW, et al. Mechanical vibration in neonatal transport: A randomized study of different mattresses. J Perinatol 2000;20(5):307–310. DOI: 10.1038/sj.jp.7200349.
Hutchinson GM, Wilson PS, Sommerfeldt S, et al. Incubator-based active noise control device: Comparison to ear covers and noise reduction zone quantification. Pediatr Res 2023;94(5):1817–1823. DOI: 10.1038/s41390-023-02708-w.
Bhagwan R, Ashokcoomar P. An exploratory study of the experiences and challenges faced by advanced life support paramedics in the milieu of neonatal transfers. Health SA 2021;26:1562. DOI: 10.4102/hsag.v26i0.1562.
Falsaperla R, Vitaliti G, Amato B, et al. Observational study on the efficiency of Neonatal Emergency Transport in reducing mortality and morbidity indexes in Sicily. Sci Rep 2021;11(1):20235. DOI: 10.1038/s41598-021-99477-5.
King BR, King TM, Foster RL, et al. Pediatric and neonatal transport teams with and without a physician: A comparison of outcomes and interventions. Pediatr Emerg Care 2007;23(2):77–82. DOI: 10.1097/PEC.0b013e318030083d.
Limperopoulos C, Gauvreau KK, O'Leary H, et al. Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics 2008;122(5):e1006–e1013. DOI: 10.1542/peds.2008-0768.
Ryan M, Lacaze-Masmonteil T, Mohammad K. Neuroprotection from acute brain injury in preterm infants. Paediatr Child Health 2019;24(4):276–290. DOI: 10.1093/pch/pxz056.
Malusky S, Donze A. Neutral head positioning in premature infants for intraventricular hemorrhage prevention: An evidence-based review. Neonatal Netw 2011;30(6):381–396. DOI: 10.1891/0730-0832.30.6.381.
Romantsik O, Calevo MG, Bruschettini M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2020;7(7):CD012362. DOI: 10.1002/14651858.CD012362.pub3.
Lawhon G, Hedlund RE. Newborn individualized developmental care and assessment program training and education. J Perinat Neonatal Nurs 2008;22(2):133–144; quiz 145–146. DOI: 10.1097/01.JPN.0000319100.90167.9f.
Roll C, Huning B, Kaunicke M, et al. Umbilical artery catheter blood sampling decreases cerebral blood volume and oxygenation in very low birthweight infants. Acta Paediatr 2000;89(7):862–866. PMID: 10943971.
Zhao Y, Zhang W, Tian X. Analysis of risk factors of early intraventricular hemorrhage in very-low-birth-weight premature infants: A single center retrospective study. BMC Pregnancy Childbirth 2022;22(1):890. DOI: 10.1186/s12884-022-05245-2.
Lightburn MH, Gauss CH, Williams DK, et al. Cerebral blood flow velocities in extremely low birth weight infants with hypotension and infants with normal blood pressure. J Pediatr 2009;154(6):824–828. DOI: 10.1016/j.jpeds.2009.01.006.
Knudsen K, McGill G, Ann Waitzman K, et al. Collaboration to improve neuroprotection and neuropromotion in the NICU: Team education and family engagement. Neonatal Netw 2021;40(4):212–223. DOI: 10.1891/11-T-680.
McLendon D, Check J, Carteaux P, et al. Implementation of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants. Pediatrics 2003;111 (4 Pt 2):e497–e503. PMID: 12671170.
Oelberg DG, Baker A, Quast D, et al. Impact of umbilical catheterization on morbidity and mortality in extremely premature newborns. J Neonatal Perinatal Med 2014;7(1):13–9.
Calciolari G, Montirosso R. The sleep protection in the preterm infants. J Matern Fetal Neonatal Med 2011;24 Suppl 1:12–14. DOI: 10.3109/14767058.2011.607563.
Jiang F. Sleep and early brain development. Ann Nutr Metab 2019;75 Suppl 1:44–54. DOI: 10.1159/000508055.
Kirischuk S, Sinning A, Blanquie O, et al. Modulation of neocortical development by early neuronal activity: Physiology and pathophysiology. Front Cell Neurosci 2017;11:379. DOI: 10.3389/fncel.2017.00379.
Holditch-Davis D, Scher M, Schwartz T, et al. Sleeping and waking state development in preterm infants. Early Hum Dev 2004;80(1): 43–64. DOI: 10.1016/j.earlhumdev.2004.05.006.
Suresh GK, Soll RF. Overview of surfactant replacement trials. J Perinatol 2005;25 Suppl 2:S40–S44. DOI: 10.1038/sj.jp.7211320.
Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. Less i