Newborn

Register      Login

VOLUME 3 , ISSUE 3 ( July-September, 2024 ) > List of Articles

EDITORIAL

Healthcare Bundles are Potentially Important in Neonatal Care as Many Disorders are Temporally Clustered

Akhil Maheshwari, Kei Lui, Mario Motta

Citation Information :

DOI: 10.5005/newborn-3-3-iv

License: CC BY-NC 4.0

Published Online: 30-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

PDF Share
  1. World-Health-Organization. Newborn mortality New York City, NY: World-Health-Organization; 2024 [Available from: https://www.who.int/newsroom/fact-sheets/detail/newborn-mortality.
  2. World-Health-Organization. Every Newborn Action Plan New York City, NY: WHO; 2014 [Available from: https://www.who.int/initiatives/everynewborn-action-plan.
  3. World-Health-Organization. Newborn health: WHO-Europe; 2021 [Available from: https://www.who.int/europe/news-room/fact-sheets/item/newborn-health.
  4. Bernstein J. Birthright New York City, NY: Caruso, M.; 2011 [Available from: https://newrepublic.com/article/89090/elections-voting-age-limitsdemocracy.
  5. Patrick S, Huggins A. The Term “Global South” Is Surging. It Should Be Retired Washington, D.C.: Carnegie Endowment for International Peace; 2023 [Available from: https://carnegieendowment.org/posts/2023/08/the-term-global-south-is-surging-it-should-be-retired?lang=en.
  6. Hogan E, Patrick S. A Closer Look at the Global South Washington D.C.: Carnegie Endowment for International Peace; 2024 [Available from: https://carnegieeurope.eu/research/2024/05/global-south-colonialism-imperialism.
  7. Gewin V. Four global-south researchers making cross-border collaborations count. Nature. 2023;624(7991):S2–S6. PMID: 38092923. doi: 10.1038/d41586-023-03902-w.
  8. Kim JU, Oleribe O, Njie R, Taylor-Robinson SD. A time for new north-south relationships in global health. Int J Gen Med. 2017;10:401–408. PMID: 29158688. doi: 10.2147/IJGM.S146475.
  9. Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022;6(2):106–115. PMID: 34800370. doi: 10.1016/S2352-4642(21)00311-4.
  10. Goldstein ND, Palumbo AJ, Bellamy SL, Purtle J, Locke R. State and local government expenditures and infant mortality in the United States. Pediatrics. 2020;146(5). PMID: 33077541. doi: 10.1542/peds.2020-1134.
  11. Batko K, Slezak A. The use of big data analytics in healthcare. J Big Data. 2022;9(1):3. PMID: 35013701. doi: 10.1186/s40537-021-00553-4.
  12. IHI-Team. What Is a Bundle? Institute for Healthcare Improvement; 2012 [Available from: https://www.ihi.org/insights/what-is-a-bundle.
  13. Resar R, Griffin FA, Haraden C, Nolan TW. Using care bundles to improve health care quality. IHI Innovation Series white paper. Cambridge, MA2012 [Available from: https://www.ihi.org/resources/white-papers/using-care-bundles-improve-health-care-quality.
  14. Fulbrook P. Developing best practice in critical care nursing: knowledge, evidence and practice. Nurs Crit Care. 2003;8(3):96–102. PMID: 12859079. doi: 10.1046/j.1478-5153.2003.00010.x.
  15. Fulbrook P, Mooney S. Care bundles in critical care: a practical approach to evidence-based practice. Nurs Crit Care. 2003;8(6):249–255. PMID: 14725390. doi: 10.1111/j.1362-1017.2003.00039.x.
  16. Engle WA. American Academy of Pediatrics Committee on Fetus and Newborn. Age terminology during the perinatal period. Pediatrics. 2004 Nov;114(5):1362–4. PMID: 15520122. doi: 10.1542/peds.2004-1915.
  17. Radbone L, Birch J, Upton M. The development and implementation of a care bundle aimed at reducing the incidence of NEC. 2013;14–19. Available from: https://www.infantjournal.co.uk/pdf/inf_049_ime.pdf.
  18. Sekhon MK, Grubb PH, Newman M, Yoder BA. Implementation of a probiotic protocol to reduce rates of necrotizing enterocolitis. J Perinatol. 2019;39(9):1315–1322. PMID: 31358866. doi: 10.1038/s41372-019-0443-5.
  19. Alshaikh B, Kostecky L, Blachly N, Yee W. Effect of a quality improvement project to use exclusive mother's own milk on rate of necrotizing enterocolitis in preterm infants. Breastfeed Med. 2015;10(7):355–361. PMID: 26230909. doi: 10.1089/bfm.2015.0042.
  20. Maria-Fe Villosis MMTA, Kambiz Rezaie, Karine Barseghyan. A bundle of care that led to sustained low incidence of necrotizing enterocolitis in very low birth weight infants: A 10-year quality improvement project. Pediatrics. 2021;147:759–760. doi: https://doi.org/10.1542/peds.147.3MA8.759b.
  21. Mavis SC, Gallup MC, Meyer M, Misgen MM, Schram LA, Herzog DL, et al. A quality improvement initiative to reduce necrotizing enterocolitis in high-risk neonates. J Perinatol. 2023;43(1):97–102. PMID: 35915215. doi: 10.1038/s41372-022-01476-5.
  22. Bagga N, Maheshwari A, Jha K, Athalye-Jape G, Jain J, Ben Ayad AE, et al. Development of a clinical care-bundle to prevent necrotizing enterocolitis. Newborn (Clarksville). 2024;3(2):70–82. doi. 10.5005/jp-journals-11002-0094.
  23. Bagga N, Maheshwari A, Jha KK, Athalye-Jape G, Jain J, Ben Ayad AE, et al. A clinical care bundle to prevent necrotizing enterocolitis. Newborn (Clarksville, Md). 2024;3(2):70–82. doi: 10.5005/jp-journals-11002-0094.
  24. Egesa WI, Odoch S, Odong RJ, Nakalema G, Asiimwe D, Ekuk E, et al. Germinal Matrix-Intraventricular Hemorrhage: A tale of preterm infants. Int J Pediatr. 2021;2021:6622598. PMID: 33815512. doi: 10.1155/2021/6622598.
  25. Gilard V, Tebani A, Bekri S, Marret S. Intraventricular hemorrhage in very preterm infants: A comprehensive review. J Clin Med. 2020;31:9(8). PMID: 32751801. doi: 10.3390/jcm9082447.
  26. Parodi A, Govaert P, Horsch S, Bravo MC, Ramenghi LA, eur USbg. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res. 2020;87(Suppl 1):13–24. PMID: 32218535. doi: 10.1038/s41390-020-0780-2.
  27. Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41(1):47–67. PMID: 24524446. doi: 10.1016/j.clp.2013.09.007.
  28. Park YS. Perspectives: Understanding the pathophysiology of intraventricular hemorrhage in preterm infants and considering of the future direction for treatment. J Korean Neurosurg Soc. 2023;66(3):298–307. PMID: 36858804. doi: 10.3340/jkns.2023.0020.
  29. Siffel C, Kistler KD, Sarda SP. Global incidence of intraventricular hemorrhage among extremely preterm infants: a systematic literature review. J Perinat Med. 2021;49(9):1017–1026. PMID: 33735943. doi: 10.1515/jpm-2020-0331.
  30. Kim KR, Jung SW, Kim DW. Risk factors associated with germinal matrix-intraventricular hemorrhage in preterm neonates. J Korean Neurosurg Soc. 2014;56(4):334–337. PMID: 25371784. doi: 10.3340/jkns.2014.56.4.334.
  31. Linder N, Haskin O, Levit O, Klinger G, Prince T, Naor N, et al. Risk factors for intraventricular hemorrhage in very low birth weight premature infants: a retrospective case-control study. Pediatrics. 2003;111(5 Pt 1):e590–e595. PMID: 12728115. doi: 10.1542/peds.111.5.e590.
  32. Ben Ayad AE, Athalye-Jape G, Jape K, Huseynova R, Vora N, Varghese NV, et al. A care-bundle to prevent germinal matrix-intraventricular hemorrhage in neonates. Newborn (Clarksville, Md). 2024;3(3):157–179. doi: 10.5005/jp-journals-11002-0107.
  33. Wei JC, Catalano R, Profit J, Gould JB, Lee HC. Impact of antenatal steroids on intraventricular hemorrhage in very-low-birth weight infants. J Perinatol. 2016;36(5):352–356. PMID: 27010109. doi: 10.1038/jp.2016.38.
  34. Romantsik O, Calevo MG, Bruschettini M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev. 2020;7(7):CD012362. PMID: 32639053. doi: 10.1002/14651858.CD012362.pub3.
  35. Pirlotte S, Beeckman K, Ooms I, Cools F. Non-pharmacological interventions for the prevention of pain during endotracheal suctioning in ventilated neonates. Cochrane Database Syst Rev. 2024;1(1):CD013353. PMID: 38235838. doi: 10.1002/14651858.CD013353.pub2.
  36. von Lindern JS, van den Bruele T, Lopriore E, Walther FJ. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr. 2011;11:16. PMID: 21314921. doi: 10.1186/1471-2431-11-16.
  37. Moradi Y, Khateri R, Haghighi L, Dehghani S, Hanis SM, Valipour M, et al. The effect of antenatal magnesium sulfate on intraventricular hemorrhage in premature infants: a systematic review and meta-analysis. Obstet Gynecol Sci. 2020;63(4):395–406. PMID: 32689768. doi: 10.5468/ogs.19210.
  38. Morris H, Magers N, Saunders S, Vesoulis Z. Potential risk modifiers for severe intraventricular hemorrhage in very low birthweight infants requiring transport. J Matern Fetal Neonatal Med. 2022;35(15):2988–2991. PMID: 32873087. doi: 10.1080/14767058.2020.1813708.
  39. Reuter S, Messier S, Steven D. The neonatal golden hour intervention to improve quality of care of the extremely low birth weight infant. S D Med. 2014;67(10):397–403, 405. PMID: 25423766. doi, https://www.ncbi.nlm.nih.gov/pubmed/25423766.
  40. Peleg B, Globus O, Granot M, Leibovitch L, Mazkereth R, Eisen I, et al. “Golden Hour” quality improvement intervention and short-term outcome among preterm infants. J Perinatol. 2019;39(3):387–392. PMID: 30341403. doi: 10.1038/s41372-018-0254-0.
  41. Harriman TL, Carter B, Dail RB, Stowell KE, Zukowsky K. Golden hour protocol for preterm infants: A quality improvement project. Adv Neonatal Care. 2018;18(6):462–470. PMID: 30212389. doi: 10.1097/ANC.0000000000000554.
  42. Moore CM, O'Reilly D, McCallion N, Curley AE. Changes in inflammatory proteins following platelet transfusion in a neonatal population. Pediatr Res. 2023;94(6):1973–1977. PMID: 37443343. doi: 10.1038/s41390-023-02731-x.
  43. Castrodale V, Rinehart S. The golden hour: improving the stabilization of the very low birth-weight infant. Adv Neonatal Care. 2014;14(1):9–14; quiz 15–6. PMID: 24472882. doi: 10.1097/ANC.0b013e31828d0289.
  44. Lerner EB, Moscati RM. The golden hour: scientific fact or medical “urban legend”? Acad Emerg Med. 2001;8(7):758–760. PMID: 11435197. doi: 10.1111/j.1553-2712.2001.tb00201.x.
  45. Ashmeade TL, Haubner L, Collins S, Miladinovic B, Fugate K. Outcomes of a neonatal golden hour implementation project. Am J Med Qual. 2016;31(1):73–80. PMID: 25194002. doi: 10.1177/1062860614548888.
  46. Badarch J, Kumar G, Enkhbayar B, Turbat T, Sereenendorj T, Tumurkhuleg B, et al. Down syndrome is the leading indication for late-stage termination of pregnancy in Mongolia. Newborn (Clarksville, Md). 2024;3(3):180–189. doi: 10.5005/jp-journals-11002-0099.
  47. Heaney S, Tomlinson M, Aventin A. Termination of pregnancy for fetal anomaly: a systematic review of the healthcare experiences and needs of parents. BMC Pregnancy Childbirth. 2022;22(1):441. PMID: 35619067. doi: 10.1186/s12884-022-04770-4.
  48. Anderson N, Boswell O, Duff G. Prenatal sonography for the detection of fetal anomalies: results of a prospective study and comparison with prior series. AJR Am J Roentgenol. 1995;165(4):943–950. PMID: 7676997. doi: 10.2214/ajr.165.4.7676997.
  49. Tsogt B, Seded K, Johnson BR. Strategic assessment t. Applying the WHO strategic approach to strengthening first and second trimester abortion services in Mongolia. Reprod Health Matters. 2008;16(31 Suppl):127–134. PMID: 18772093. doi: 10.1016/S0968-8080(08)31383-4.
  50. Melo DG, Sanseverino MTV, Schmalfuss TO, Larrandaburu M. Why are birth defects surveillance programs important? Front Public Health. 2021;9:753342. PMID: 34796160. doi: 10.3389/fpubh.2021.753342.
  51. Singh S, Frydrysiak-Brzozowska A, Ben Ayad AE, Khasanova SS, Bordon J, Michie C. A primer on epigenetic changes: The more we know, the more we find in fetuses and infants. Newborn (Clarksville, Md). 2024;3(3):219–232. doi: 10.5005/jp-journals-11002-0104.
  52. Garegrat R, Chetan C, Chandrakala BS, Nagpal R, JH, Jethwa N, et al. Cranial ultrasound as an imaging modality in neonatal sepsis to determine involvement of the central nervous system. Newborn (Clarksville, Md). 2024;3(3):206–218. doi: 10.5005/jp-journals-11002-0103.
  53. Baruah D, Gogoi N, Gogoi R. Ultrasound evaluation of acute bacterial meningitis and its sequale in infants. Indian J Radiol Imaging. 2006;16(4): 553–558.
  54. Raghav B, Goulatia RK, Gupta AK, Misra NK, Singh M. Giant subdural empyema in an infant. sonographic observations. Neuroradiology. 1990;32(2): 154–155. PMID: 1975948. doi: 10.1007/BF00588567.
  55. Syrogiannopoulos GA, Nelson JD, McCracken GH, Jr. Subdural collections of fluid in acute bacterial meningitis: a review of 136 cases. Pediatr Infect Dis. 1986;5(3):343–352. PMID: 3725642. doi: 10.1097/00006454-198605000-00014.
  56. Chen CY, Huang CC, Chang YC, Chow NH, Chio CC, Zimmerman RA. Subdural empyema in 10 infants: US characteristics and clinical correlates. Radiology. 1998;207(3):609–617. PMID: 9609881. doi: 10.1148/radiology.207.3.9609881.
  57. Chen CY, Chou TY, Zimmerman RA, Lee CC, Chen FH, Faro SH. Pericerebral fluid collection: differentiation of enlarged subarachnoid spaces from subdural collections with color Doppler US. Radiology. 1996;201(2):389–392. PMID: 8888229. doi: 10.1148/radiology.201.2.8888229.
  58. Seibert JJ, Avva R, Hronas TN, Mocharla R, Vanderzalm T, Cox K, et al. Use of power Doppler in pediatric neurosonography: a pictorial essay. Radiographics. 1998;18(4):879–890. PMID: 9672972. doi: 10.1148/radiographics.18.4.9672972.
  59. Littwin B, Pomiecko A, Stepien-Roman M, Sparchez Z, Kosiak W. Bacterial meningitis in neonates and infants—the sonographic picture. J Ultrason. 2018;18(72):63–70. PMID: 29844943. doi: 10.15557/JoU.2018.0010.
  60. Gupta N, Grover H, Bansal I, Hooda K, Sapire JM, Anand R, et al. Neonatal cranial sonography: ultrasound findings in neonatal meningitis—a pictorial review. Quant Imaging Med Surg. 2017;7(1):123–131. PMID: 28275563. doi: 10.21037/qims.2017.02.01.
  61. Jequier S, Jequier JC. Sonographic nomogram of the leptomeninges (pia-glial plate) and its usefulness for evaluating bacterial meningitis in infants. AJNR Am J Neuroradiol. 1999;20(7):1359–1364. PMID: 10472998. doi, https://www.ncbi.nlm.nih.gov/pubmed/10472998.
  62. Patel K, Rathore R, Chaudhuri CR. Cranial ultrasonography in evaluation of meningitis in neonates and infants. Int J Contemp Med Surg Radiol. 2019;4(4):D87–D90. doi: 10.21276/ijcmsr.2019.4.4.21.
  63. Han BK, Babcock DS, McAdams L. Bacterial meningitis in infants: sonographic findings. Radiology. 1985;154(3):645–650. PMID: 3881791. doi: 10.1148/radiology.154.3.3881791.
  64. Arrumugham R, Katariya S, Singhi P, Singhi S, Suri S, Walia BN. Sonography in pyogenic meningitis. Indian Pediatr. 1994;31(11):1329–1336. PMID: 7896329. doi, https://www.ncbi.nlm.nih.gov/pubmed/7896329.
  65. Kapoor R, Saha MM, Gupta NC. Ultrasonic evaluation of complicated meningitis. Indian Pediatr. 1989;26(8):804–808. PMID: 2620982. doi, https://www.ncbi.nlm.nih.gov/pubmed/2620982.
  66. Raju VS, Rao MN, Rao VS. Cranial sonography in pyogenic meningitis in neonates and infants. J Trop Pediatr. 1995;41(2):68–73. PMID: 7776399. doi: 10.1093/tropej/41.2.68.
  67. Mohammadabadi T, Kumar G. Camel milk as a source of nutrients and immunogens for infants. Newborn (Clarksville, Md). 2024;3(3):195–205. doi: 10.5005/jp-journals-11002-0106.
  68. Gorban AM, Izzeldin OM. Fatty acids and lipids of camel milk and colostrum. Int J Food Sci Nutr. 2001;52(3):283–287. PMID: 11400477. doi: 10.1080/713671778.
  69. Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res. 2021;9(1):87. PMID: 34863296. doi: 10.1186/s40364-021-00332-6.
  70. Hinz K, O'Connor PM, Huppertz T, Ross RP, Kelly AL. Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. J Dairy Res. 2012;79(2):185–191. PMID: 22365180. doi: 10.1017/S0022029912000015.
  71. El-Zahar KM, Hassan MFY, Al-Qaba SF. Protective effect of fermented camel milk containing bifidobacterium longum BB536 on blood lipid profile in hypercholesterolemic rats. J Nutr Metab. 2021;2021:1557945. PMID: 34745660. doi: 10.1155/2021/1557945.
  72. Hoyos AB, Vasquez-Hoyos P. Safety of full enteral feedings initiated soon after birth instead of parenteral fluids in clinicallystable 30-34 weeks gestation premature infants. Newborn (Clarksville, Md). 2024;3(3):190–194. doi: 10.5005/jp-journals-11002-0101.
  73. Jha VV, Arora G, Arora V. Two novel mutations associated with familial chylomicronemia in a neonate. Newborn (Clarksville, Md). 2024;3(3):238–244. doi: 10.5005/jp-journals-11002-0105.
  74. Alsarhani WK, Al Adel FF, Alamri A, Al Malawi RM, AlBloushi AF. Alterations in ocular microcirculation and oxygen metabolism in patients with lipemia retinalis. BMC Ophthalmol. 2022;22(1):295. PMID: 35794613. doi: 10.1186/s12886-022-02515-7.
  75. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009;297(2):E271–288. PMID: 19318514. doi: 10.1152/ajpendo.90920.2008.
  76. Bertolio R, Napoletano F, Mano M, Maurer-Stroh S, Fantuz M, Zannini A, et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun. 2019;10(1):1326. PMID: 30902980. doi: 10.1038/s41467-019-09152-7.
  77. Barrios N, Velázquez E, Velazquez F, Maidana M, Bordón J. Not every massive cardiomegaly in a newborn infant is due to an Ebstein's anomaly or a large pericardial effusion. Newborn (Clarksville, Md). 2024;3(3):233–237. doi: 10.5005/jp-journals-11002-0100.
  78. Eronen M. Outcome of fetuses with heart disease diagnosed in utero. Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F41–146. PMID: 9279182. doi: 10.1136/fn.77.1.f41.
  79. Chaoui R, Bollmann R, Goldner B, Heling KS, Tennstedt C. Fetal cardiomegaly: echocardiographic findings and outcome in 19 cases. Fetal Diagn Ther. 1994;9(2):92–104. PMID: 8185846. doi: 10.1159/000263915.
  80. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183–2242. PMID: 24763516. doi: 10.1161/01.cir.0000437597.44550.5d.
  81. Hasbini J, Safawi N, Mneimneh S, Rajab M, Berjaoui C, Naous A. Pericardial effusion complicated by umbilical vein catheter in a preterm infant with respiratory distress syndrome: A case report. Radiol Case Rep. 2024;19(2):741–744. PMID: 38074435. doi: 10.1016/j.radcr.2023.11.036.
  82. Bonaba J, Marcos JR, Saldun de Rodriguez ML, Soto JA. Cardiomegaly and cardiac insufficiency of early infancy. Am J Dis Children. 1945;73(3):378–379.
  83. Reisman M, Hipona FA, Bloor CM, Talner NS. Congenital tricuspid insufficiency—a cause of massive cardiomegaly and heart failure in the neonate. J Pediatr. 1965;66:869–876. PMID: 14279846. doi: 10.1016/s0022-3476(65)80061-0.
  84. Kugel MA. Enlargement of the heart in infants and young children. Am Heart J. 1939;17(5):602–615. doi: 10.1016/S0002-8703(39)90039-6.
  85. Brenner JI, Berman MA. Massive cardiomegaly in a neonate. Chest. 1975;68(4):573–574. PMID: 126143. doi: 10.1378/chest.68.4.573.
  86. Upadhyay S, Law S, Kholwadwala D. A newborn with cardiomegaly. J Emerg Trauma Shock. 2010;3(3):298. PMID: 20930980. doi: 10.4103/0974-2700.66541.
  87. Kumar TKS. Ebstein's anomaly in the neonate. Indian J Thorac Cardiovasc Surg. 2021;37(Suppl 1):17–25. PMID: 33603283. doi: 10.1007/s12055-020-00942-z.
  88. Heithoff KB, Sane SM, Williams HJ, Jarvis CJ, Carter J, Kane P, et al. Bronchopulmonary foregut malformations. A unifying etiological concept. AJR Am J Roentgenol. 1976;126(1):46–55. PMID: 175683. doi: 10.2214/ajr.126.1.46.
  89. Oyachi N, Numano F, Koizumi K, Shinohara T, Matsubara H. Congenital communicating bronchopulmonary foregut malformation including ectopic pancreatic tissue in an infant. Surg Case Rep. 2021;7(1):128. PMID: 34028645. doi: 10.1186/s40792-021-01211-w.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.