Register      Login

VOLUME 3 , ISSUE 1 ( January-March, 2024 ) > List of Articles



Akhil Maheshwari, Thierry AGM Huisman

Keywords : 7-dehydrocholesterol reductase, Alobar, Ambiguous genitalia, Anophthalmia, Arhinencephaly, Asegmentation, pseudotrisomy 13, genoa syndrome (semilobal hpe), and brachial amelia, Azygos anterior cerebral artery, Butterfly sign, Caudal dysgenesis, Cavum septi pellucidi, Ccr4-not transcription complex, Cell adhesion associated, Cell adhesion molecule-related/downregulated by oncogenes, Cerebellar hypoplasia, Chiari I malformation, Chromosomal errors, Circle of Willis, Cleft lip, Cripto, Culler–Jones syndrome, de Morsier syndrome, Delta-like canonical notch ligand 1, Demyer, Dispatched RND transporter family member, Dispatched RND transporter family member 1, EGF-CFC family member, Fibroblast growth factor 8, Fibroblast growth factor 8 (FGF8), Fibroblast growth factor receptor 1, Fibroblast growth factor receptor 1 (FGFR1), Forebrain, Forkhead BOX H1 FOXH1, Forkhead box protein h1, Frenulum, Frontonasal dysplasia, GLI family zinc finger 2, Growth arrest specific 1, Growth arrest specific 1 (GAS1), Hartsfield syn

Citation Information : Maheshwari A, Huisman TA. Holoprosencephaly. 2024; 3 (1):45-60.

DOI: 10.5005/jp-journals-11002-0083

License: CC BY-NC 4.0

Published Online: 26-03-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Holoprosencephaly (HPE) is a complex malformation of the forebrain resulting from failed or incomplete division of the forebrain during the embryonic period. It is the most frequently seen developmental abnormality of the forebrain in humans; the incidence is nearly 1 of every 250 human embryos. However, most of these embryos do not survive and are lost to miscarriage. At birth, the prevalence is 1 in 8,000–10,000 live births and stillbirths. In HPE, the cleavage of the forebrain (prosencephalon) into the right and left hemispheres, deep brain structures, and the olfactory and optic bulbs and tracts remains incomplete. These central nervous system (CNS) defects develop during the first few 2–3 weeks of the fetal period. The etiopathogenesis is unclear, although both syndromic and isolated HPE can be heritable. The condition involves multiple systems, including the central nervous system, eyes, hearing, olfactory, gastrointestinal system, and genital tracts can be most severely affected. No specific treatment is known. Careful clinical and genetic evaluation is necessary for symptomatic management and for counseling families. In this article, we present our own clinical and imaging experience and combine it with an extensive search in the databases PubMed, EMBASE, and Scopus. To avoid bias, keywords were identified from discussions in our own group and from PubMed's Medical Subject Heading (MeSH) thesaurus.

PDF Share
  1. Dubourg C, Bendavid C, Pasquier L, et al. Holoprosencephaly. Orphanet J Rare Dis 2007;2:8. DOI: 10.1186/1750-1172-2-8.
  2. Delezoide AL, Narcy F, Larroche JC. Cerebral midline developmental anomalies: Spectrum and associated features. Genet Couns 1990;1(3-4):197–210. PMID: 2098044.
  3. Volpe P, Campobasso G, De Robertis V, et al. Disorders of prosencephalic development. Prenat Diagn 2009;29(4):340–354. DOI: 10.1002/pd.2208.
  4. Ramakrishnan S, Gupta V. Holoprosencephaly. StatPearls. Treasure Island (FL). 2023.
  5. Raam MS, Solomon BD, Muenke M. Holoprosencephaly: A guide to diagnosis and clinical management. Indian Pediatr 2011;48(6):457–466. DOI: 10.1007/s13312-011-0078-x.
  6. Muhr J, Arbor TC, Ackerman KM. Embryology, gastrulation. StatPearls. Treasure Island (FL). 2023.
  7. Mishra S, Sabhlok S, Panda PK, et al. Management of midline facial clefts. J Maxillofac Oral Surg 2015;14(4):883–890. DOI: 10.1007/s12663-015-0763-8.
  8. Kobori JA, Herrick MK, Urich H. Arhinencephaly. The spectrum of associated malformations. Brain 1987;110(1):237–260. DOI: 10.1093/brain/110.1.237.
  9. Parizad N, Faraji N, Hassanpour A, et al. Cyclopia, a newborn with a single eye, a rare but lethal congenital anomaly: A case report. Int J Surg Case Rep 2021;88:106548. DOI: 10.1016/j.ijscr.2021.106548.
  10. Tekendo-Ngongang C, Muenke M, Kruszka P. Holoprosencephaly overview. In: Adam MP, Feldman J, Mirzaa GM, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle. 1993–2023.
  11. Jaramillo C, Brandt SK, Jorgenson RJ. Autosomal dominant inheritance of the DeMyer Sequence. J Craniofac Genet Dev Biol 1988;8(3):199–204. PMID: 3209682.
  12. Wilson SW, Houart C. Early steps in the development of the forebrain. Dev Cell 2004;6(2):167–181. DOI: 10.1016/s1534-5807(04)00027-9.
  13. Roth DM, Bayona F, Baddam P, et al. Craniofacial development: Neural crest in molecular embryology. Head Neck Pathol 2021;15(1):1–15. DOI: 10.1007/s12105-021-01301-z.
  14. Ewings EL, Carstens MH. Neuroembryology and functional anatomy of craniofacial clefts. Indian J Plast Surg 2009;42 Suppl(Suppl):S19–S34. DOI: 10.4103/0970-0358.57184.
  15. Kauvar EF, Muenke M. Holoprosencephaly: Recommendations for diagnosis and management. Curr Opin Pediatr 2010;22(6):687–695. DOI: 10.1097/MOP.0b013e32833f56d5.
  16. Oba H, Barkovich AJ. Holoprosencephaly: An analysis of callosal formation and its relation to development of the interhemispheric fissure. AJNR Am J Neuroradiol 1995;16(3):453–460. PMID: 7793363.
  17. Orioli IM, Amar E, Bakker MK, et al. Cyclopia: An epidemiologic study in a large dataset from the International Clearinghouse of Birth Defects Surveillance and Research. Am J Med Genet C Semin Med Genet 2011;157C(4):344–357. DOI: 10.1002/ajmg.c.30323.
  18. Gondre-Lewis MC, Gboluaje T, Reid SN, et al. The human brain and face: Mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18. J Anat 2015;227(3):255–267. DOI: 10.1111/joa.12343.
  19. Kunwar A, Shrestha BM, Shrestha S, et al. Cyclopia with proboscis: A rare congenital anomaly. Clin Case Rep 2021;9(7):e04466. DOI: 10.1002/ccr3.4466.
  20. Dewan P, Rohatgi S, Roy S, et al. Ethmocephaly: A rare cephalic disorder. J Pediatr Neurosci 2016;11(1):92–93. DOI: 10.4103/1817-1745.181262.
  21. Lin CH, Tsai JD, Ho YJ, et al. Alobar holoprosencephaly associated with cebocephaly and craniosynostosis. Acta Neurol Taiwan 2009;18(2):123–126. PMID: 19673365.
  22. Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007;2:47. DOI: 10.1186/1750-1172-2-47.
  23. Lakhkar BB, Lakhkar BN, Lakhkar BB. Semilobarholoprosencephaly-A dreading congenital anomaly. J Clin Diagn Res 2017;11(6):TD03–TD04. DOI: 10.7860/JCDR/2017/26530.10105.
  24. Nonkulovski D, Sofijanova A, Spasovska T, et al. Semilobar holoprosencephaly caused by a novel and De Novo ZIC2 pathogenic variant. Balkan J Med Genet 2023;25(2):71–76. DOI: 10.2478/bjmg-2022-0017.
  25. Malta M, AlMutiri R, Martin CS, et al. Holoprosencephaly: Review of embryology, clinical phenotypes, etiology and management. Children (Basel) 2023;10(4):647. DOI: 10.3390/children10040647.
  26. Honey EM, Butow KW, Zwahlen RA. Holoprosencephaly with Clefts: Data of 85 patients, treatment and outcome: Part 1: History, subdivisions, and data on 85 holoprosencephalic cleft patients. Ann Maxillofac Surg 2019;9(1):140–145. DOI: 10.4103/ams.ams_50_19.
  27. Pilu G, Ambrosetto P, Sandri F, et al. Intraventricular fused fornices: A specific sign of fetal lobar holoprosencephaly. Ultrasound Obstet Gynecol 1994;4(1):65–67. DOI: 10.1046/j.1469-0705.1994.04010065.x.
  28. Rajalakshmi PP, Gadodia A, Priyatharshini P. Middle interhemispheric variant of holoprosencephaly: A rare midline malformation. J Pediatr Neurosci 2015;10(3):244–246. DOI: 10.4103/1817-1745.165678.
  29. Bulakbasi N, Cancuri O, Kocaoglu M. The middle interhemispheric variant of holoprosencephaly: Magnetic resonance and diffusion tensor imaging findings. Br J Radiol 2016;89(1063):20160115. DOI: 10.1259/bjr.20160115.
  30. Oegema R, Barkovich AJ, Mancini GMS, et al. Subcortical heterotopic gray matter brain malformations: Classification study of 107 individuals. Neurology 2019;93(14):e1360–e1373. DOI: 10.1212/WNL.0000000000008200.
  31. Fallet-Bianco C. Neuropathology of holoprosencephaly. Am J Med Genet C Semin Med Genet 2018;178(2):214–228. DOI: 10.1002/ajmg.c.31623.
  32. Simon EM, Hevner RF, Pinter JD, et al. The middle interhemispheric variant of holoprosencephaly. AJNR Am J Neuroradiol 2002;23(1):151–156. PMID: 11827888.
  33. Severino M, Geraldo AF, Utz N, et al. Definitions and classification of malformations of cortical development: Practical guidelines. Brain 2020;143(10):2874–2894. DOI: 10.1093/brain/awaa174.
  34. Hahn JS, Barnes PD, Clegg NJ, et al. Septopreoptic holoprosencephaly: A mild subtype associated with midline craniofacial anomalies. AJNR Am J Neuroradiol 2010;31(9):1596–1601. DOI: 10.3174/ajnr.A2123.
  35. Pineda-Alvarez DE, Solomon BD, Roessler E, et al. A broad range of ophthalmologic anomalies is part of the holoprosencephaly spectrum. Am J Med Genet A 2011;155A(11):2713–2720. DOI: 10.1002/ajmg.a.34261.
  36. Thomas EM, Gibikote S, Panwar JS, et al. Congenital nasal pyriform aperture stenosis: A rare cause of nasal airway obstruction in a neonate. Indian J Radiol Imaging 2010;20(4):266–268. DOI: 10.4103/0971-3026.73539.
  37. Hall RK. Solitary median maxillary central incisor (SMMCI) syndrome. Orphanet J Rare Dis 2006;1:12. DOI: 10.1186/1750-1172-1-12.
  38. Negi A, Negi A, Mohanan M. Solitary median maxillary central incisor syndrome: A rare entity. J Oral Maxillofac Pathol 2020;24(2):402. DOI: 10.4103/jomfp.JOMFP_183_19.
  39. Blackmore K, Wynne DM. A case of solitary median maxillary central incisor (SMMCI) syndrome with bilateral pyriform aperture stenosis and choanal atresia. Int J Pediatr Otorhinolaryngol 2010;74(8):967–969. DOI: 10.1016/j.ijporl.2010.05.018.
  40. Sharma S, Sharma V, Bothra M. Frontonasal dysplasia (Median cleft face syndrome). J Neurosci Rural Pract 2012;3(1):65–67. DOI: 10.4103/0976-3147.91947.
  41. Lee SI, Lee SJ, Joo HS. Frontonasal dysplasia: A case report. Arch Craniofac Surg 2019;20(6):397–400. DOI: 10.7181/acfs.2019.00570.
  42. Farlie PG, Baker NL, Yap P, et al. Frontonasal dysplasia: Towards an understanding of molecular and developmental aetiology. Mol Syndromol 2016;7(6):312–321. DOI: 10.1159/000450533.
  43. Martinelli P, Russo R, Agangi A, et al. Prenatal ultrasound diagnosis of frontonasal dysplasia. Prenat Diagn 2002;22(5):375–379. DOI: 10.1002/pd.287.
  44. Richieri-Costa A, Guion-Almeida ML. The syndrome of frontonasal dysplasia, callosal agenesis, basal encephalocele, and eye anomalies-Phenotypic and aetiological considerations. Int J Med Sci 2004;1(1):34–42. DOI: 10.7150/ijms.1.34.
  45. Meryem B, Amine N, Houssein O, et al. Antenatal and postnatal diagnosis of semilobar holoprosencephaly: Two case reports. Glob Pediatr Health 2023;10:2333794X231156037. DOI: 10.1177/2333794X231156037.
  46. Summers AD, Reefhuis J, Taliano J, et al. Nongenetic risk factors for holoprosencephaly: An updated review of the epidemiologic literature. Am J Med Genet C Semin Med Genet 2018;178(2):151–164. DOI: 10.1002/ajmg.c.31614.
  47. Kruszka P, Muenke M. Syndromes associated with holoprosencephaly. Am J Med Genet C Semin Med Genet 2018;178(2):229–237. DOI: 10.1002/ajmg.c.31620.
  48. Geng X, Oliver G. Pathogenesis of holoprosencephaly. J Clin Invest 2009;119(6):1403–1413. DOI: 10.1172/JCI38937.
  49. Costa AD, Schultz R, Rosemberg S. Alobar holoprosencephaly and Trisomy 13 (Patau syndrome). Autops Case Rep 2013;3(2):5–10. DOI: 10.4322/acr.2013.012.
  50. Swatek J, Szumilo J, Burdan F. Alobar holoprosencephaly with cyclopia-autopsy-based observations from one medical center. Reprod Toxicol 2013;41:80–85. DOI: 10.1016/j.reprotox.2013.06.060.
  51. Hu T, Kruszka P, Martinez AF, et al. Cytogenetics and holoprosencephaly: A chromosomal microarray study of 222 individuals with holoprosencephaly. Am J Med Genet C Semin Med Genet 2018;178(2):175–186. DOI: 10.1002/ajmg.c.31622.
  52. Kelley RL, Roessler E, Hennekam RC, et al. Holoprosencephaly in RSH/smith-lemli-opitz syndrome: Does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 1996;66(4):478–484. DOI: 10.1002/(SICI)1096-8628(19961230)66:4<478::AID-AJMG22>3.0.CO;2-Q.
  53. Kelley RI, Hennekam RC. The smith-lemli-opitz syndrome. J Med Genet 2000;37(5):321–335. DOI: 10.1136/jmg.37.5.321.
  54. DeBarber AE, Eroglu Y, Merkens LS, et al. Smith-lemli-opitz syndrome. Expert Rev Mol Med 2011;13:e24. DOI: 10.1017/S146239941100189X.
  55. Simonis N, Migeotte I, Lambert N, et al. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet 2013;50(9):585–592. DOI: 10.1136/jmedgenet-2013-101603.
  56. Herman S, Delio M, Morrow B, et al. Agnathia-otocephaly complex: A case report and examination of the OTX2 and PRRX1 genes. Gene 2012;494(1):124–129. DOI: 10.1016/j.gene.2011.11.033.
  57. Biesecker LG. GLI3-Related Pallister-Hall Syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., (Eds). GeneReviews((R)). Seattle (WA). 1993.
  58. Bae GU, Domene S, Roessler E, et al. Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet 2011;89(2):231–240. DOI: 10.1016/j.ajhg.2011.07.001.
  59. Travessa A, Dias P, Rocha P, et al. Prenatal diagnosis of holoprosencephaly associated with smith-lemli-opitz syndrome (SLOS) in a 46,XX fetus. Taiwan J Obstet Gynecol 2017;56(4):541–544. DOI: 10.1016/j.tjog.2017.01.012.
  60. Ionescu CA, Calin D, Navolan D, et al. Alobar holoprosencephaly associated with a rare chromosomal abnormality: Case report and literature review. Medicine (Baltimore) 2018;97(29):e11521. DOI: 10.1097/MD.0000000000011521.
  61. Vaaralahti K, Raivio T, Koivu R, et al. Genetic overlap between holoprosencephaly and Kallmann syndrome. Mol Syndromol 2012;3(1):1–5. DOI: 10.1159/000338706.
  62. Cole LW, Sidis Y, Zhang C, et al. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: Molecular genetics and clinical spectrum. J Clin Endocrinol Metab 2008;93(9):3551–3559. DOI: 10.1210/jc.2007-2654.
  63. Correa FA, Trarbach EB, Tusset C, et al. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr Connect 2015;4(2):100–107. DOI: 10.1530/EC-15-0015.
  64. Mimaki M, Shiihara T, Watanabe M, et al. Holoprosencephaly with cerebellar vermis hypoplasia in 13q deletion syndrome: Critical region for cerebellar dysgenesis within 13q32.2q34. Brain Dev 2015;37(7):714–718. DOI: 10.1016/j.braindev.2014.10.009.
  65. Jin Q, Qiang R, Cai B, et al. The genotype and phenotype of chromosome 18p deletion syndrome: Case series. Medicine (Baltimore) 2021;100(18):e25777. DOI: 10.1097/MD.0000000000025777.
  66. Temple SEL, Sachdev R, Ellaway C. Familial DHCR7 genotype presenting as a very mild form of Smith-Lemli-Opitz syndrome and lethal holoprosencephaly. JIMD Rep 2020;56(1):3–8. DOI: 10.1002/jmd2.12155.
  67. Jones GE, Robertson L, Maniyar A, et al. Microform holoprosencephaly with bilateral congenital elbow dislocation; increasing the phenotypic spectrum of Steinfeld syndrome. Am J Med Genet A 2016;170(3):754–759. DOI: 10.1002/ajmg.a.37511.
  68. Valenza F, Cittaro D, Stupka E, et al. A novel truncating variant of GLI2 associated with Culler-Jones syndrome impairs Hedgehog signalling. PLoS One 2019;14(1):e0210097. DOI: 10.1371/journal.pone.0210097.
  69. Richieri-Costa A, Vendramini-Pittoli S, Kokitsu-Nakata NM, et al. Multisystem involvement in a patient with a PTCH1 mutation: Clinical and imaging findings. J Pediatr Genet 2017;6(2):103–106. DOI: 10.1055/s-0036-1588028.
  70. Loo CKC, Pearen MA, Ramm GA. The role of sonic hedgehog in human holoprosencephaly and short-rib polydactyly syndromes. Int J Mol Sci 2021;22(18):9854. DOI: 10.3390/ijms22189854.
  71. Roessler E, Muenke M. The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet 2010;154C(1):52–61. DOI: 10.1002/ajmg.c.30236.
  72. Abramyan J. Hedgehog signaling and embryonic craniofacial disorders. J Dev Biol 2019;7(2). DOI: 10.3390/jdb7020009.
  73. Petryk A, Graf D, Marcucio R. Holoprosencephaly: Signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. Wiley Interdiscip Rev Dev Biol 2015;4(1):17–32. DOI: 10.1002/wdev.161.
  74. Keaton AA, Solomon BD, Kauvar EF, et al. TGIF mutations in human holoprosencephaly: Correlation between genotype and phenotype. Mol Syndromol 2010;1(5):211–222. DOI: 10.1159/000328203.
  75. Wallis DE, Roessler E, Hehr U, et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 1999;22(2):196–198. DOI: 10.1038/9718.
  76. Reinders MG, van Hout AF, Cosgun B, et al. New mutations and an updated database for the patched-1 (PTCH1) gene. Mol Genet Genomic Med 2018;6(3):409–415. DOI: 10.1002/mgg3.380.
  77. Roessler E, Ouspenskaia MV, Karkera JD, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 2008;83(1):18–29. DOI: 10.1016/j.ajhg.2008.05.012.
  78. Bashamboo A, Bignon-Topalovic J, Rouba H, et al. A nonsense mutation in the hedgehog receptor CDON associated with pituitary stalk interruption syndrome. J Clin Endocrinol Metab 2016;101(1): 12–15. DOI: 10.1210/jc.2015-2995.
  79. Arauz RF, Solomon BD, Pineda-Alvarez DE, et al. A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans. Mol Syndromol 2010;1(2):59–66. DOI: 10.1159/000302285.
  80. Ishiguro A, Hatayama M, Otsuka MI, et al. Link between the causative genes of holoprosencephaly: Zic2 directly regulates Tgif1 expression. Sci Rep 2018;8(1):2140. DOI: 10.1038/s41598-018-20242-2.
  81. Zhang XM, Yang XJ. Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev Biol 2001;233(2):271–290. DOI: 10.1006/dbio.2000.0195.
  82. Diacou R, Zhao Y, Zheng D, et al. Six3 and Six6 are jointly required for the maintenance of multipotent retinal progenitors through both positive and negative regulation. Cell Rep 2018;25(9):2510–2523 e4. DOI: 10.1016/j.celrep.2018.10.106.
  83. Nanni L, Ming JE, Bocian M, et al. The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 1999;8(13):2479–2488. DOI: 10.1093/hmg/8.13. 2479.
  84. Singh S, Tokhunts R, Baubet V, et al. Sonic hedgehog mutations identified in holoprosencephaly patients can act in a dominant negative manner. Hum Genet 2009;125(1):95–103. DOI: 10.1007/s00439-008-0599-0.
  85. Xiong J, Xiang B, Chen X, et al. Case report: A novel mutation in ZIC2 in an infant with microcephaly, holoprosencephaly, and arachnoid cyst. Medicine (Baltimore) 2019;98(10):e14780. DOI: 10.1097/MD.0000000000014780.
  86. Roessler E, Lacbawan F, Dubourg C, et al. The full spectrum of holoprosencephaly-associated mutations within the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat 2009;30(4):E541–E554. DOI: 10.1002/humu.20982.
  87. Tasdemir S, Sahin I, Cayir A, et al. Holoprosencephaly: ZIC2 mutation in a case with panhypopituitarism. J Pediatr Endocrinol Metab 2014;27(7-8):777–781. DOI: 10.1515/jpem-2013-0449.
  88. Solomon BD, Lacbawan F, Mercier S, et al. Mutations in ZIC2 in human holoprosencephaly: Description of a novel ZIC2 specific phenotype and comprehensive analysis of 157 individuals. J Med Genet 2010;47(8):513–524. DOI: 10.1136/jmg.2009.073049.
  89. Gounongbe C, Marangoni M, Gouder de Beauregard V, et al. Middle interhemispheric variant of holoprosencephaly: First prenatal report of a ZIC2 missense mutation. Clin Case Rep 2020;8(7):1287–1292. DOI: 10.1002/ccr3.2896.
  90. Lacbawan F, Solomon BD, Roessler E, et al. Clinical spectrum of SIX3-associated mutations in holoprosencephaly: Correlation between genotype, phenotype and function. J Med Genet 2009;46(6):389–398. DOI: 10.1136/jmg.2008.063818.
  91. Paulussen AD, Schrander-Stumpel CT, Tserpelis DC, et al. The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet 2010;18(9):999–1005. DOI: 10.1038/ejhg.2010.70.
  92. Hong M, Christ A, Christa A, et al. Cdon mutation and fetal alcohol converge on Nodal signaling in a mouse model of holoprosencephaly. Elife 2020;9:e60351. DOI: 10.7554/eLife.60351.
  93. Kruszka P, Berger SI, Weiss K, et al. A CCR4-NOT Transcription Complex, Subunit 1, CNOT1, Variant Associated with Holoprosencephaly. Am J Hum Genet 2019;104(5):990–993. DOI: 10.1016/j.ajhg.2019.03.017.
  94. Roessler E, Ma Y, Ouspenskaia MV, et al. Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans. Hum Genet 2009;125(4):393–400. DOI: 10.1007/s00439-009-0628-7.
  95. Dupe V, Rochard L, Mercier S, et al. NOTCH, a new signaling pathway implicated in holoprosencephaly. Hum Mol Genet 2011;20(6):1122–1131. DOI: 10.1093/hmg/ddq556.
  96. Tekendo-Ngongang C, Kruszka P, Martinez AF, et al. Novel heterozygous variants in KMT2D associated with holoprosencephaly. Clin Genet 2019;96(3):266–270. DOI: 10.1111/cge.13598.
  97. Hughes JJ, Alkhunaizi E, Kruszka P, et al. Loss-of-function variants in PPP1R12A: From isolated sex reversal to holoprosencephaly spectrum and urogenital malformations. Am J Hum Genet 2020;106(1):121–128. DOI: 10.1016/j.ajhg.2019.12.004.
  98. Goel H, Parasivam G. Another case of holoprosencephaly associated with RAD21 loss-of-function variant. Brain 2020;143(8):e64. DOI: 10.1093/brain/awaa173.
  99. Kruszka P, Berger SI, Casa V, et al. Cohesin complex-associated holoprosencephaly. Brain 2019;142(9):2631–2643. DOI: 10.1093/brain/awz210.
  100. Mouden C, de Tayrac M, Dubourg C, et al. Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings. PLoS One 2015;10(2):e0117418. DOI: 10.1371/journal.pone.0117418.
  101. Seppala M, Depew MJ, Martinelli DC, et al. Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J Clin Invest 2007;117(6):1575–1584. DOI: 10.1172/JCI32032.
  102. Houtmeyers R, Tchouate Gainkam O, Glanville-Jones HA, et al. Zic2 mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 2016;25(18):3946–3959. DOI: 10.1093/hmg/ddw235.
  103. Ming JE, Kaupas ME, Roessler E, et al. Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 2002;110(4):297–301. DOI: 10.1007/s00439-002-0695-5.
  104. Dubourg C, Carre W, Hamdi-Roze H, et al. Mutational spectrum in holoprosencephaly shows that FGF is a new major signaling pathway. Hum Mutat 2016;37(12):1329–1339. DOI: 10.1002/humu.23038.
  105. McKean DM, Niswander L. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol Open 2012;1(9):874–883. DOI: 10.1242/bio.20121982.
  106. Bear KA, Solomon BD, Antonini S, et al. Pathogenic mutations in GLI2 cause a specific phenotype that is distinct from holoprosencephaly. J Med Genet 2014;51(6):413–418. DOI: 10.1136/jmedgenet-2013-102249.
  107. Kordass U, Schroder C, Elbracht M, et al. A familial GLI2 deletion (2q14.2) not associated with the holoprosencephaly syndrome phenotype. Am J Med Genet A 2015;167A(5):1121–1124. DOI: 10.1002/ajmg.a.36972.
  108. Martinez-Frias ML, Bermejo E, Garcia A, et al. Holoprosencephaly associated with caudal dysgenesis: A clinical-epidemiological analysis. Am J Med Genet 1994;53(1):46–51. DOI: 10.1002/ajmg.1320530110.
  109. Morichon-Delvallez N, Delezoide AL, Vekemans M. Holoprosencephaly and sacral agenesis in a fetus with a terminal deletion 7q36-->7qter. J Med Genet 1993;30(6):521–524. DOI: 10.1136/jmg.30.6.521.
  110. Cohen MM Jr, Gorlin RJ. Pseudo-trisomy 13 syndrome. Am J Med Genet 1991;39(3):332–335; discussion 336–337. DOI: 10.1002/ajmg.1320390316.
  111. Utine GE, Alanay Y, Aktas D, et al. Pseudo-trisomy 13 in a fetus: further support for autosomal recessive inheritance. Turk J Pediatr 2008;50(3):287–290. PMID: 18773678.
  112. Hacihamdioglu B, Siklar Z, Savas Erdeve S, et al. Genoa syndrome and central diabetes insipidus: a case report. J Clin Res Pediatr Endocrinol 2010;2(2):89–91. DOI: 10.4274/jcrpe.v2i2.89.
  113. Camera G, Lituania M, Cohen MM Jr. Holoprosencephaly and primary craniosynostosis: The Genoa syndrome. Am J Med Genet 1993;47(8):1161–1165. DOI: 10.1002/ajmg.1320470806.
  114. Kariminejad A, Goodarzi P, Asghari-Roodsari A, et al. Amelia, cleft lip, and holoprosencephaly: A distinct entity. Am J Med Genet A 2009;149A(12):2828–2831. DOI: 10.1002/ajmg.a.32933.
  115. Thomas M, Donnai D. Bilateral brachial amelia with facial clefts and holoprosencephaly. Clinical Dysmorphology 1994;3(3):266–269. PMID: 7981864..
  116. Sun Y, Ye X, Fan Y, et al. High detection rate of copy number variations using capture sequencing data: A retrospective study. Clin Chem 2020;66(3):455–462. DOI: 10.1093/clinchem/hvz033.
  117. Barr M Jr, Hanson JW, Currey K, et al. Holoprosencephaly in infants of diabetic mothers. J Pediatr 1983;102(4):565–568. DOI: 10.1016/s0022-3476(83)80185-1.
  118. Mishra V, Panigrahi N, Rao A, et al. Neurological abnormalities in infants of mothers with diabetes mellitus. Newborn (Clarksville) 2022;1(2):238–244. DOI: 10.5005/jp-journals-11002-0033.
  119. Haas D, Muenke M. Abnormal sterol metabolism in holoprosencephaly. Am J Med Genet C Semin Med Genet 2010;154C(1):102–108. DOI: 10.1002/ajmg.c.30243.
  120. Billington CJ Jr, Schmidt B, Marcucio RS, et al. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice. Dis Model Mech 2015;8(2):139–146. DOI: 10.1242/dmm.018275.
  121. Kotzot D, Weigl J, Huk W, et al. Hydantoin syndrome with holoprosencephaly: A possible rare teratogenic effect. Teratology 1993;48(1):15–19. DOI: 10.1002/tera.1420480105.
  122. Pirmez R, Freitas ME, Gasparetto EL, et al. Moebius syndrome and holoprosencephaly following exposure to misoprostol. Pediatr Neurol 2010;43(5):371–373. DOI: 10.1016/j.pediatrneurol.2010.05.026.
  123. Seidahmed MZ, Shaheed MM, Abdulbasit OB, et al. A case of methotrexate embryopathy with holoprosencephaly, expanding the phenotype. Birth Defects Res A Clin Mol Teratol 2006;76(2):138–142. DOI: 10.1002/bdra.20199.
  124. Aruna E, Chakravarthy VK, Rao DN, et al. Holoprosencephaly with multiple anomalies of the craniofacial bones-an autopsy report. J Clin Diagn Res 2013;7(8):1722–1724. DOI: 10.7860/JCDR/2013/5734.3268.
  125. Bonneau D, Marechaud M, Odent S, et al. Heterotaxy-neural tube defect and holoprosencephaly occurring independently in two sib fetuses. Am J Med Genet 1999;84(4):373–376. DOI: 10.1002/(sici)1096-8628(19990604)84:4<373::aid-ajmg13>;2-8.
  126. Levey EB, Stashinko E, Clegg NJ, et al. Management of children with holoprosencephaly. Am J Med Genet C Semin Med Genet 2010;154C(1):183–190. DOI: 10.1002/ajmg.c.30254.
  127. Mastroiacovo P, Corchia C, Botto LD, et al. Epidemiology and genetics of microtia-anotia: A registry based study on over one million births. J Med Genet 1995;32(6):453–457. DOI: 10.1136/jmg.32.6.453.
  128. Hahn JS, Hahn SM, Kammann H, et al. Endocrine disorders associated with holoprosencephaly. J Pediatr Endocrinol Metab 2005;18(10):935–941. DOI: 10.1515/jpem.2005.18.10.935.
  129. Gupta AO, Leblanc P, Janumpally KC, et al. A preterm infant with semilobar holoprosencephaly and hydrocephalus: A case report. Cases J 2010;3:35. DOI: 10.1186/1757-1626-3-35.
  130. Martin NJ, Steinberg BG. The dup(3)(p25 leads to pter) syndrome: A case with holoprosencephaly. Am J Med Genet 1983;14(4):767–772. DOI: 10.1002/ajmg.1320140418.
  131. Orioli IM, Castilla EE. Epidemiology of holoprosencephaly: Prevalence and risk factors. Am J Med Genet C Semin Med Genet 2010;154C(1): 13–21. DOI: 10.1002/ajmg.c.30233.
  132. Hahn JS, Barnes PD. Neuroimaging advances in holoprosencephaly: Refining the spectrum of the midline malformation. Am J Med Genet C Semin Med Genet 2010;154C(1):120–132. DOI: 10.1002/ajmg.c.30238.
  133. Joo GJ, Beke A, Papp C, et al. Prenatal diagnosis, phenotypic and obstetric characteristics of holoprosencephaly. Fetal Diagn Ther 2005;20(3):161–166. DOI: 10.1159/000083897.
  134. Mercier S, Dubourg C, Belleguic M, et al. Genetic counseling and “molecular” prenatal diagnosis of holoprosencephaly (HPE). Am J Med Genet C Semin Med Genet 2010;154C(1):191–196. DOI: 10.1002/ajmg.c.30246.
  135. Sepulveda W, Dezerega V, Be C. First-trimester sonographic diagnosis of holoprosencephaly: value of the “butterfly” sign. J Ultrasound Med 2004;23(6):761–765; quiz 6–7. DOI: 10.7863/jum.2004.23.6.761.
  136. Ben M'Barek I, Tassin M, Guet A, et al. Antenatal diagnosis of absence of septum pellucidum. Clin Case Rep 2020;8(3):498–503. DOI: 10.1002/ccr3.2666.
  137. Plawner LL, Delgado MR, Miller VS, et al. Neuroanatomy of holoprosencephaly as predictor of function: Beyond the face predicting the brain. Neurology 2002;59(7):1058–1066. DOI: 10.1212/wnl.59.7.1058.
  138. Reis P, Mourao J. Septo-optic dysplasia/de Morsier's syndrome. Saudi J Anaesth 2017;11(1):106–107. DOI: 10.4103/1658-354X.197350.
  139. Fitz CR. Holoprosencephaly and septo-optic dysplasia. Neuroimaging Clin N Am 1994;4(2):263–281. PMID: 8081628.
  140. Pilliod RA, Pettersson DR, Gibson T, et al. Diagnostic accuracy and clinical outcomes associated with prenatal diagnosis of fetal absent cavum septi pellucidi. Prenat Diagn 2018;38(6):395–401. DOI: 10.1002/pd.5247.
  141. Wang CY, Ginat DT. Neuroimaging of septo-optic dysplasia-plus with midbrain hypoplasia and ophthalmoplegia. eNeurologicalSci 2020;19:100235. DOI: 10.1016/j.ensci.2020.100235.
  142. Ward DJ, Connolly DJA, Griffiths PD. Review of the MRI brain findings of septo-optic dysplasia. Clin Radiol 2021;76(2):160 e1–e14. DOI: 10.1016/j.crad.2020.09.007.
  143. Altshuler E, Saidi A, Budd J. DiGeorge syndrome: Consider the diagnosis. BMJ Case Rep 2022;15(2):e245164. DOI: 10.1136/bcr-2021-245164.
  144. Pavone P, Pratico AD, Vitaliti G, et al. Hydranencephaly: Cerebral spinal fluid instead of cerebral mantles. Ital J Pediatr 2014;40:79. DOI: 10.1186/s13052-014-0079-1.
  145. Pokhraj PS, Jigar JP, Chetan M, et al. Congenital porencephaly in a new born child. J Clin Diagn Res 2014;8(11):RJ01–RJ02. DOI: 10.7860/JCDR/2014/9981.5140.
  146. Donn SM, Bowerman RA. Neonatal posthemorrhagic porencephaly: Ultrasonographic features. Am J Dis Child 1982;136(8):707–709. DOI: 10.1001/archpedi.1982.03970440051014.
  147. Tinker SC, Gilboa SM, Moore CA, et al. Specific birth defects in pregnancies of women with diabetes: National birth defects prevention study, 1997-2011. Am J Obstet Gynecol 2020;222(2):176 e1–e11. DOI: 10.1016/j.ajog.2019.08.028.
  148. Johnson CY, Rasmussen SA. Non-genetic risk factors for holoprosencephaly. Am J Med Genet C Semin Med Genet 2010;154C(1):73–85. DOI: 10.1002/ajmg.c.30242.
  149. Solomon BD, Rosenbaum KN, Meck JM, et al. Holoprosencephaly due to numeric chromosome abnormalities. Am J Med Genet C Semin Med Genet 2010;154C(1):146–148. DOI: 10.1002/ajmg.c.30232.
  150. Kruszka P, Martinez AF, Muenke M. Molecular testing in holoprosencephaly. Am J Med Genet C Semin Med Genet 2018;178(2):187–193. DOI: 10.1002/ajmg.c.31617.
  151. Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis 2019;14(1):153. DOI: 10.1186/s13023-019-1127-0.
  152. Barr M Jr, Cohen MM Jr. Holoprosencephaly survival and performance. Am J Med Genet 1999;89(2):116–120. PMID: 10559767.
  153. Weiss K, Kruszka P, Guillen Sacoto MJ, et al. In-depth investigations of adolescents and adults with holoprosencephaly identify unique characteristics. Genet Med 2018;20(1):14–23. DOI: 10.1038/gim.2017.68.
  154. Hadley DW, Kruszka P, Muenke M. Challenging issues arising in counseling families experiencing holoprosencephaly. Am J Med Genet C Semin Med Genet 2018;178(2):238–245. DOI: 10.1002/ajmg.c.31627.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.