Newborn

Register      Login

VOLUME 2 , ISSUE 4 ( October-December, 2023 ) > List of Articles

REVIEW ARTICLE

Bacteriophages

Srijan Singh, Gopal Nath, Akhil Maheshwari

Keywords : Abi-associated enzymes, Abortive infection, Adsorption block, Bacteriophage, Bacteriophage exclusion system, Biofilms, Bradley's classification, Carjivirus communis, Caudovirales, Chromosomal islands, Contractile tails, Cosmids, CrAssphage, CRISPER-cas bacterial immune system, Darwinian principles, Double-stranded DNA, Destruction of phage DNA after injection, Diversity-generating retroelements, dsDNA, Endolysin, Enterobacteria P4-like prophages, ESKAPE, Evolutionary arms race, Glucosyl-hydroxymethylcytosine, Helper proteins, Human phageome, Hydroxymethylcytosine, Infant, Lactococcus phage c2, Lit activator gol peptide, Long non-contractile tails, Lytic cycle, Lysogenic cycle, Metagenomics, Mosaicism, MS2 coat, Mycoplasma phage P1, Myoviridae, Neonate, Newborn, P2-like prophages, Pasteurella phage F108, Penetration block, Phage display, Phagemid, Phage coevolution, Phage cocktail, Phage terminase small subunit, Phage anti-restriction-induced system, Phage ecology, Podoviridae, Polyphage, Prophage, Prokaryote

Citation Information : Singh S, Nath G, Maheshwari A. Bacteriophages. 2023; 2 (4):297-309.

DOI: 10.5005/jp-journals-11002-0078

License: CC BY-NC 4.0

Published Online: 05-01-2024

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Bacteriophages, viruses that invade bacterial cells, are the most abundant organisms in the biosphere. Phages include viruses with double-stranded DNA (most common), single-stranded DNA, single-stranded RNA, and double-stranded RNA (least common). Most virions (96%) are tailed; other types are cubic, filamentous, or pleomorphic. Phage genomes are diverse and pervasively mosaic owing to a high frequency of horizontal genetic exchange and recombinations. Phages may have lytic or lysogenic life cycles. They attach to specific bacteria and achieve killing by enzymes endolysins and holins, without affecting the commensal microflora because of host specificity. There is a constant “evolutionary arms race” which leads to competitive bacteria phage coevolution. Numerous diverse and sophisticated bacterial defense mechanisms are being developed to inhibit various stages of the phage life cycle. At the same time, phages have also evolved to overcome these bacterial defenses. Phage-based treatments are being developed where single phages, phage cocktails, phage-derived enzymes, phages in combination with antibiotics, and genetically modified phages might be useful. This can be useful in the treatment of infection with multidrug resistant (MDR) pathogens and also for biofilm removal.


PDF Share
  1. Clokie MR, Millard AD, Letarov AV, et al. Phages in nature. Bacteriophage 2011;1(1):31–45. DOI: 10.4161/bact.1.1.14942.
  2. Kasman LM, Porter LD. Bacteriophages. Brenner's Encyclopedia of Genetics: Second Edition. Published online September 26, 2022: 280–283. DOI: 10.1016/B978-0-12-374984-0.00131-5.
  3. Fiers W, Contreras R, Duerinck F, et al. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 1976;260(5551):500–507. DOI: 10.1038/260500A0.
  4. Jou WM, Haegeman G, Ysebaert M, et al. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 1972;237(5350):82–88. DOI: 10.1038/237082A0.
  5. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics 2016;107(1):1–8. DOI: 10.1016/j.ygeno.2015.11.003.
  6. Ackermann HW. Phage classification and characterization. Methods Mol Biol 2009;501:127–140. DOI: 10.1007/978-1-60327-164-6_13.
  7. Hankin ME. The bactericidal action of the waters of the Jamuna and Ganges rivers on Cholera microbes. Ann Inst Pasteur 10:511–523 (1896) 2011;1(3):117–126. DOI: 10.4161/BACT.1.3.16736.
  8. Sulakvelidze A, Alavidze Z, Morris J. Bacteriophage therapy. Antimicrob Agents Chemother 2001;45(3):649–659. DOI: 10.1128/AAC.45.3.649–659.2001.
  9. Hatfull GF. Bacteriophage genomics. Curr Opin Microbiol 2008;11(5):447–453. DOI: 10.1016/J.MIB.2008.09.004.
  10. Friedman SD, Genthner FJ, Gentry J, et al. Gene mapping and phylogenetic analysis of the complete genome from 30 single-stranded RNA male-specific coliphages (family Leviviridae). J Virol 2009;83(21):11233–11243. DOI: 10.1128/JVI.01308-09.
  11. Tu AHT, Voelker LRL, Shen X, et al. Complete nucleotide sequence of the mycoplasma virus P1 genome. Plasmid 2001;45(2):122–126. DOI: 10.1006/PLAS.2000.1501.
  12. Lubbers MW, Waterfield NR, Beresford TPJ, et al. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 1995;61(12):4348–4356. DOI: 10.1128/AEM.61.12.4348-4356.1995.
  13. Campoy S, Aranda J, Àlvarez G, et al. Isolation and sequencing of a temperate transducing phage for Pasteurella multocida. Appl Environ Microbiol 2006;72(5):3154–3160. DOI: 10.1128/AEM.72.5.3154-3160.2006.
  14. Introduction to phage evolutionary biology. Paul Turner Lab. Accessed on: July 31, 2023. Available from: https://turnerlab.yale.edu/introduction-phage-evolutionary-biology.
  15. Abedon ST. Phage evolution and ecology. Adv Appl Microbiol 2009;67(C):1–45. DOI: 10.1016/S0065-2164(08)01001-0.
  16. Seaman PF, Day MJ. Isolation and characterization of a bacteriophage with an unusually large genome from the Great Salt Plains National Wildlife Refuge, Oklahoma, USA. FEMS Microbiol Ecol 2007;60(1):1–13. DOI: 10.1111/J.1574-6941.2006.00277.X.
  17. Serwer P, Hayes SJ, Thomas JA, et al. Propagating the missing bacteriophages: a large bacteriophage in a new class. Virol J 2007;4(1):1–5. DOI: 10.1186/1743-422X-4-21/FIGURES/1.
  18. Fauquet CM, Fargette D. International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2005;2:64. DOI: 10.1186/1743-422X-2-64.
  19. Lopez J, Webster RE. Morphogenesis of filamentous bacteriophage f1: Orientation of extrusion and production of polyphage. Virology 1983;127(1):177–193. DOI: 10.1016/0042-6822(83)90382-3.
  20. Hendrix RW, Smith MCM, Burns RN, et al. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci USA 1999;96(5):2192–2197. DOI: 10.1073/PNAS.96.5.2192.
  21. Pope WH, Jacobs-Sera D, Russel DA, et al. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One 2011;6(1): e16329. DOI: 10.1371/JOURNAL.PONE.0016329.
  22. King G, Murray NE. Restriction enzymes in cells, not eppendorfs. Trends Microbiol 1994;2(12):465–469. DOI: 10.1016/0966-842X(94)90649-1.
  23. Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 2010;64:475–493. DOI: 10.1146/ANNUREV.MICRO.112408.134123.
  24. Amitsur M, Levitz R, Kaufmann G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J 1987;6(8):2499–2503. DOI: 10.1002/J.1460-2075.1987.TB02532.X.
  25. Fineran PC, Blower TR, Foulds IJ, et al. The phage abortive infection system, toxin, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A 2009;106(3):894–899. DOI: 10.1073/PNAS.0808832106.
  26. Medhekar B, Miller JF. Diversity-generating retroelements. Curr Opin Microbiol 2007;10(4):388–395. DOI: 10.1016/J.MIB.2007.06.004.
  27. McMahon SA, Roberts GA, Johnson KA, et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res 2009;37(15):4887–4897. DOI: 10.1093/NAR/GKP478.
  28. Zhu H, Yin S, Shuman S. Characterization of polynucleotide kinase/phosphatase enzymes from Mycobacteriophages omega and Cjw1 and vibriophage KVP40. J Biol Chem 2004;279(25):26358–26369. DOI: 10.1074/JBC.M403200200.
  29. Bacteriophage. Accessed on: July 24, 2023. Available from: https://www.microbiologybook.org/mayer/phage.htm.
  30. Bacteriophage. Accessed on: July 11, 2023. Available from: https://www.microbiologybook.org/mayer/phage.htm.
  31. Li W, Caberoy NB. New perspective for phage display as an efficient and versatile technology of functional proteomics. Appl Microbiol Biotechnol 2010;85(4):909. DOI: 10.1007/S00253-009-2277-0.
  32. Laurinavičius S, Käkelä R, Bamford DH, et al. The origin of phospholipids of the enveloped bacteriophage phi6. Virology 2004;326(1):182–190. DOI: 10.1016/J.VIROL.2004.05.021.
  33. Van Etten JL, Vidaver AK, Koski RK, et al. Base composition and hybridization studies of the three double-stranded RNA segments of bacteriophage phi 6. J Virol 1974;13(6):1254–1262. DOI: 10.1128/JVI.13.6.1254-1262.1974.
  34. Lyytinen OL, Starkova D, Poranen MM. Microbial production of lipid-protein vesicles using enveloped bacteriophage phi6. Microb Cell Fact 2019;18(1):1–9. DOI: 10.1186/S12934-019-1079-Z/FIGURES/3.
  35. Tsopanakis C, Parish JH. Bacteriophage MX-1: Properties of the phage and its structural proteins. J General Virol 1976;30(1):99–112. DOI: 10.1099/0022-1317-30-1-99/CITE/REFWORKS.
  36. sid – Glycoprotein 3 - Enterobacteria phage P4 (Bacteriophage P4) | UniProtKB | UniProt. Accessed on: July 30, 2023. Available from: https://www.uniprot.org/uniprotkb/P05461/entry.
  37. Camerini-Otero RD, Datta A, Franklin RM. Structure and synthesis of a lipid-containing bacteriophage: XI. Studies on the structural glycoprotein of the virus particle. Virology 1972;49(2):522–536. DOI: 10.1016/0042-6822(72)90504-1.
  38. Boeckaerts D, Stock M, De Baets B, et al. Identification of phage receptor-binding protein sequences with hidden Markov models and an extreme gradient boosting classifier. Viruses 2022; 14(6):1329. DOI: 10.3390/V14061329/S1.
  39. Zhai L, Anderson D, Bruckner E, et al. Novel expression of coat proteins from thermophilic bacteriophage ΦIN93 and evaluation for assembly into virus-like particles. Protein Expr Purif 2021;187:105932. DOI: 10.1016/J.PEP.2021.105932.
  40. Mäntynen S, Sundberg LR, Oksanen HM, et al. Half a century of research on membrane-containing bacteriophages: Bringing new concepts to modern virology. Viruses 2019;11(1):76. DOI: 10.3390/V11010076.
  41. Abeysekera GS, Love MJ, Manners SH, et al. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022;13:1044143. DOI: 10.3389/FMICB.2022.1044143/BIBTEX.
  42. Carmody CM, Goddard JM, Nugen SR. Bacteriophage capsid modification by genetic and chemical methods. Bioconjug Chem 2021;32(3):466. DOI: 10.1021/ACS.BIOCONJCHEM.1C00018.
  43. Eiserling FA, Boy De La Tour E. Capsomeres and other structures observed on some bacteriophages. Pathobiology 1965;28(1):175–180. DOI: 10.1159/000161628.
  44. Mishra RR, Nath G. Detection of bacteriophages against escape group of nosocomial pathogens from Ganga river water during community bath at various rituals: Since 2013–2019. J Appl Pharmaceut Sci Res 2020;3(1):17–21. DOI: 10.31069/japsr.v3i1.5.
  45. Young R. Bacteriophage holins: Deadly diversity. J Mol Microbiol Biotechnol 2002;4(1):21–36. PMID: 11763969.
  46. Borysowski J, Weber-Dąbrowska B, Górski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 2006;231(4):366–377. DOI: 10.1177/1535370206231 00402.
  47. Henkin TM. Posttranscriptional Regulation. Encyclopedia of Microbiology, 3rd Edition. Published online January 1, 2009:342–356. DOI: 10.1016/B978-012373944-5.00086-9.
  48. Mills DR, Priano C, Merz PA, et al. Q beta RNA bacteriophage: Mapping cis-acting elements within an RNA genome. J Virol 1990;64(8):3872. DOI: 10.1128/JVI.64.8.3872-3881.1990.
  49. Chaikeeratisak V, Nguyen K, Egan ME, et al. The phage nucleus and tubulin spindle are conserved among large Pseudomonas phages. Cell Rep 2017;20(7):1563. DOI: 10.1016/J.CELREP.2017.07.064.
  50. Redrejo-Rodríguez M, Salas M. Multiple roles of genome-attached bacteriophage terminal proteins. Virology 2014;468–470:322–329. DOI: 10.1016/J.VIROL.2014.08.003.
  51. Morcinek-Orłowska J, Zdrojewska K, Węgrzyn A. Bacteriophage-encoded DNA polymerases—beyond the traditional view of polymerase activities. Int J Mol Sci 2022;23(2). DOI: 10.3390/IJMS23020635.
  52. Berjón-Otero M, Villar L, De Vega M, et al. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity. Proc Natl Acad Sci U S A 2015;112(27):E3476–E3484. DOI: 10.1073/PNAS. 1510280112.
  53. Chen X, Su S, Chen Y, et al. Structural studies reveal a ring-shaped architecture of deep-sea vent phage NrS-1 polymerase. Nucleic Acids Res 2020;48(6):3343–3355. DOI: 10.1093/NAR/GKAA071.
  54. Pezo V, Jaziri F, Bourguignon PY, et al. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 2021;372(6541):520–524. DOI: 10.1126/SCIENCE.ABE6542.
  55. McAllister WT, Raskin CA. The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Mol Microbiol 1993;10(1):1–6. DOI: 10.1111/J.1365-2958.1993.TB00897.X.
  56. Frolova LY, Metelyev VG, Ratmanova KI, et al. Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers. Nucleic Acids Res 1977;4(7):2145. DOI: 10.1093/NAR/4.7.2145.
  57. Yap ML, Rossmann MG. Structure and function of bacteriophage T4. Future Microbiol 2014;9(12):1319. DOI: 10.2217/FMB.14.91.
  58. Gruidl ME, Chen TC, Gargano S, et al. Two bacteriophage T4 baseplate genes (25 and 26) and the DNA repair GeneuvsY belong to spatially and temporally overlapping transcription units. Virology 1991;184(1):359–369. DOI: 10.1016/0042-6822(91)90852-3.
  59. Groth AC, Calos MP. Phage integrases: Biology and applications. J Mol Biol 2004;335(3):667–678. DOI: 10.1016/j.jmb.2003.09.082.
  60. Hofer U. The sting is in the phage's tail. Nature Rev Microbiol 2016;14(8):477–477. DOI: 10.1038/nrmicro.2016.97.
  61. Aksyuk AA, Leiman PG, Kurochkina LP, et al. The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria. EMBO J 2009;28(7):821. DOI: 10.1038/EMBOJ.2009.36.
  62. Taslem Mourosi J, Awe A, Guo W, et al. Understanding bacteriophage tail fiber interaction with host surface receptor: the key “blueprint” for reprogramming phage host range. Int J Mol Sci 2022;23(20):12146. DOI: 10.3390/IJMS232012146.
  63. Hyman P, van Raaij M. Bacteriophage T4 long tail fiber domains. Biophys Rev 2018;10(2):463. DOI: 10.1007/S12551-017-0348-5.
  64. Leiman PG, Arisaka F, Van Raaij MJ, et al. Morphogenesis of the T4 tail and tail fibers. Virol J 2010;7(1):1–28. DOI: 10.1186/1743-422X-7-355/FIGURES/16.
  65. Fokine A, Zhang Z, Kanamaru S, et al. The molecular architecture of the bacteriophage T4 Neck. J Mol Biol 2013;425(10):1731. DOI: 10.1016/J.JMB.2013.02.012.
  66. Akhter T, Zhao L, Kohda A, et al. The neck of bacteriophage T4 is a ring-like structure formed by a hetero-oligomer of gp13 and gp14. Biochim Biophys Acta 2007;1774(8):1036–1043. DOI: 10.1016/J.BBAPAP.2007.05.011.
  67. Lefkowitz EJ, Dempsey DM, Hendrickson RC, et al. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 2018;46(D1):D708–D717. DOI: 10.1093/NAR/GKX.932.
  68. Adriaenssens EM, Rodney Brister J. How to name and classify your phage: An informal guide. Viruses 2017;9(4):70. DOI: 10.3390/V.9040070.
  69. Murphy FA. International Committee on Taxonomy of Viruses., International Union of Microbiological Societies. Virology Division. Virus taxonomy: Classification and nomenclature of viruses: Sixth report of the International Committee on Taxonomy of Viruses. Published online 1995:586.
  70. Turner D, Shkoporov AN, Lood C, et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 2023;168(2). DOI: 10.1007/S00705-022-05694-2.
  71. Liu Y, Demina TA, Roux S, et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS biology 2021;19(11):e3001442. DOI: 10.1371/journal.pbio.3001442.
  72. Walker PJ, Siddell SG, Lefkowitz EJ, et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch Virol 2022;167(11):2429–2440. DOI: 10.1007/s00705-022-05516-5.
  73. Rakhuba D V, Kolomiets EI, Dey ES, et al. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol 2010;59(3):145–155. PMID: 21033576.
  74. Brown S, Santa Maria JP, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 2013;67:313–336. DOI: 10.1146/annurev-micro-092412-155620.
  75. León M, Bastías R. Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 2015;6(APR):135678. DOI: 10.3389/fmicb.2015.00343.
  76. Inal JM. Phage therapy: A reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp (Warsz) 2003;51(4):237–244. PMID: 12956433.
  77. Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004;68(3):560–602. DOI: 10.1128/MMBR.68.3.560-602.2004.
  78. Keen EC. Paradigms of pathogenesis: Targeting the mobile genetic elements of disease. Front Cell Infect Microbiol 2012;2:161. DOI: 10.3389/fcimb.2012.00161.
  79. Wagner PL, Acheson DWK, Waldor MK. Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 2001;69(3):1934–1937. DOI: 10.1128/IAI.69.3.1934-1937.2001.
  80. Ptashne M. Lambda's switch: Lessons from a module swap. Curr Biol 2006;16(12): R459-R462. DOI: 10.1016/j.cub.2006.05.037.
  81. Watson BNJ, Staals RHJ, Fineran PC. CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction. mBio 2018;9(1):e02406–e02417. DOI: 10.1128/MBIO.02406-17.
  82. Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 2012;82: 91–118. DOI: 10.1016/B978-0-12-394621-8.00014-5.
  83. Abedon ST. Bacterial ‘immunity’ against bacteriophages. Bacteriophage 2012;2(1):50. DOI: 10.4161/BACT.18609.
  84. Archana A, Patel PS, Kumar R, et al. Neutralizing antibody response against subcutaneously injected bacteriophages in rabbit model. Virus Dis 2021;32(1):38–45. DOI: 10.1007/S13337-021-00673-8.
  85. São-José C. Engineering of phage-derived lytic enzymes: Improving their potential as antimicrobials. Antibiotics 2018;7(2):29. DOI: 10.3390/antibiotics7020029.
  86. Callaway E. Do you speak virus? Phages caught sending chemical messages. Nature. Published online 2020. DOI: 10.1038/NATURE.2017.21313.
  87. Erez Z, Steinberger-Levy I, Shamir M, et al. Communication between viruses guides lysis-lysogeny decisions. Nature 2017;541(7638):488. DOI: 10.1038/NATURE21049.
  88. McLaughlin RN, Malik HS, Levine JD, et al. Genetic conflicts: The usual suspects and beyond. J Exp Biol 2017;220(1):6–17. DOI: 10.1242/JEB.148148.
  89. Svircev A, Roach D, Castle A. Framing the future with bacteriophages in agriculture. Viruses 2018;10(5):218. DOI: 10.3390/V10050218.
  90. Rostøl JT, Marraffini L. (Ph)ighting phages: How bacteria resist their parasites. Cell Host Microbe 2019;25(2):184–194. DOI: 10.1016/J.CHOM.2019.01.009.
  91. Clément JM, Lepouce E, Marchal C, et al. Genetic study of a membrane protein: DNA sequence alterations due to 17 lamB point mutations affecting adsorption of phage lambda. EMBO J 1983;2(1):77–80. DOI: 10.1002/J.1460-2075.1983.TB01384.X.
  92. Cumby N, Edwards AM, Davidson AR, et al. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 2012;194(18):5012–5019. DOI: 10.1128/JB.00843-12/ASSET/4105D23E-A668-44C7-8B0F-440FF1AB86C5/ASSETS/GRAPHIC/ZJB9990918960006.JPEG.
  93. Tock MR, Dryden DTF. The biology of restriction and anti-restriction. Curr Opin Microbiol 2005;8(4):466–472. DOI: 10.1016/J.MIB.2005.06.003.
  94. Roberts RJ, Belfort M, Bestor T, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 2003;31(7):1805–1812. DOI: 10.1093/NAR/GKG274.
  95. Samson JE, Magadán AH, Sabri M, et al. Revenge of the phages: Defeating bacterial defences. Nat Rev Microbiol 2013;11(10):675–687. DOI: 10.1038/NRMICRO3096.
  96. Raleigh EA, Wilson G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proceedings of the National Academy of Sciences. 1986;83(23):9070–9074. DOI: 10.1073/PNAS.83.23.9070.
  97. Stewart FJ, Panne D, Bickle TA, et al. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 2000;298(4):611–622. DOI: 10.1006/JMBI.2000.3697.
  98. Bair CL, Black LW. A Type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J Mol Biol 2007;366(3):768–778. DOI: 10.1016/J.JMB.2006.11.051.
  99. Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas: Backward and forward. Cell 2018;172(6):1239–1259. DOI: 10.1016/J.CELL.2017.11.032.
  100. Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR–Cas systems. Nature Rev Microbiol 2015;13(11):722–736. DOI: 10.1038/nrmicro3569.
  101. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (1979) 2007;315(5819):1709–1712. DOI: 10.1126/science.1138140.
  102. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science (1979) 2008;322(5909):1843–1845. DOI: 10.1126/SCIENCE.1165771/SUPPL_FILE/MARRAFFINI-SOM.PDF.
  103. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (1979) 2012;337(6096):816–821. DOI: 10.1126/SCIENCE.1225829/SUPPL_FILE/JINEK.SM.PDF.
  104. Sashital DG, Jinek M, Doudna JA. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol 2011;18(6):680–687. DOI: 10.1038/nsmb. 2043.
  105. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163(3):759–771. DOI: 10.1016/J.CELL.2015.09.038.
  106. Semenova E, Jore MM, Datsenko KA, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA 2011;108(25):10098–10103. DOI: 10.1073/PNAS.1104144108/SUPPL_FILE/PNAS.1104144108_SI.PDF.
  107. Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 2008;190(4):1390–1400. DOI: 10.1128/JB.01412-07.
  108. Hegge JW, Swarts DC, Van Der Oost J. Prokaryotic argonaute proteins: novel genome-editing tools? Nat Rev Microbiol 2018;16(1):5–11. DOI: 10.1038/NRMICRO.2017.73.
  109. Makarova KS, Wolf YI, van der Oost J, et al. Prokaryotic homologs of argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 2009;4:29. DOI: 10.1186/1745-6150-4-29.
  110. Swarts DC, Szczepaniak M, Sheng G, et al. Autonomous generation and loading of DNA guides by bacterial argonaute. Mol Cell 2017;65(6):985–998.e6. DOI: 10.1016/J.MOLCEL.2017.01.033.
  111. Zander A, Willkomm S, Ofer S, et al. Guide-independent DNA cleavage by archaeal argonaute from Methanocaldococcus jannaschii. Nat Microbiol 2017;2. DOI: 10.1038/NMICROBIOL.2017.34.
  112. Snyder L. Phage-exclusion enzymes: A bonanza of biochemical and cell biology reagents? Mol Microbiol 1995;15(3):415–420. DOI: 10.1111/J.1365-2958.1995.TB02255.X.
  113. Harms A, Brodersen DE, Mitarai N, et al. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol Cell 2018;70(5):768–784. DOI: 10.1016/J.MOLCEL.2018.01.003.
  114. Millman A, Bernheim A, Stokar-Avihail A, et al. Bacterial retrons function in anti-phage defense. Cell 2020;183(6):1551–1561.e12. DOI: 10.1016/J.CELL.2020.09.065.
  115. Egido JE, Costa AR, Aparicio-Maldonado C, et al. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 2022;46(1):fuab048. DOI: 10.1093/FEMSRE/FUAB048.
  116. Ka D, Oh H, Park E, et al. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat Commun 2020;11(1):2816. DOI: 10.1038/S41467-020-16703-W.
  117. Penadés JR, Christie GE. The phage-inducible chromosomal islands: A family of highly evolved molecular parasites. Annu Rev Virol 2015;2:181–201. DOI: 10.1146/annurev-virology-031413-085446.
  118. Tormo-Más MÁ, Mir I, Shrestha A, et al. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 2010;465(7299):779–782. DOI: 10.1038/nature09065.
  119. Novick RP, Christie GE, Penadés JR. The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol 2010;8(8): 541–551. DOI: 10.1038/NRMICRO2393.
  120. Ram G, Chen J, Ross HF, et al. Precisely modulated pathogenicity island interference with late phage gene transcription. Proc Natl Acad Sci U S A 2014;111(40):14536–14541. DOI: 10.1073/PNAS. 1406749111.
  121. Ruzin A, Lindsay J, Novick RP. Molecular genetics of SaPI1 – A mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 2001;41(2):365–377. DOI: 10.1046/J.1365-2958.2001.02488.X.
  122. Ram G, Chen J, Kumar K, et al. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc Natl Acad Sci U S A 2012;109(40): 16300–16305. DOI: 10.1073/PNAS.1204615109.
  123. Rousset F, Dowding J, Bernheim A, et al. Prophage-encoded hotspots of bacterial immune systems. bioRxiv. Published online January 22, 2021:2021.01.21.427644. DOI: 10.1101/2021.01.21.427644.
  124. Goldfarb T, Sberro H, Weinstock E, et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 2015;34(2):169–183. DOI: 10.15252/EMBJ.201489455.
  125. Gordeeva J, Morozova N, Sierro N, et al. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res 2019;47(1):253–265. DOI: 10.1093/NAR/GKY1125.
  126. Ofir G, Melamed S, Sberro H, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 2018;3(1):90–98. DOI: 10.1038/S41564-017-0051-0.
  127. Guo H, Arambula D, Ghosh P, et al. Diversity-Generating Retroelements in Phage and Bacterial Genomes. Microbiol Spectr 2014;2(6). DOI: 10.1128/MICROBIOLSPEC.MDNA3-0029-2014.
  128. Paul BG, Burstein D, Castelle CJ, et al. Retroelement guided protein diversification abounds in vast lineages of bacteria and archaea. Nat Microbiol 2017;2:17045. DOI: 10.1038/NMICROBIOL.2017.45.
  129. Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 2016; 363(4):fnw002. DOI: 10.1093/FEMSLE/FNW002.
  130. Latka A, Maciejewska B, Majkowska-Skrobek G, et al. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 2017;101(8):3103–3119. DOI: 10.1007/S00253-017-8224-6.
  131. Rusinov IS, Ershova AS, Karyagina AS, et al. Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses. BMC Genomics 2018;19(1):1–11. DOI: 10.1186/S12864-018-5324-3/FIGURES/4.
  132. Rocha EPC, Danchin A, Viari A. Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 2001;11(6):946–958. DOI: 10.1101/GR.GR-1531RR.
  133. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010;8(5):317–327. DOI: 10.1038/NRMICRO2315.
  134. Golovenko D, Manakova E, Tamulaitiene G, et al. Structural mechanisms for the 5'-CCWGG sequence recognition by the N- and C-terminal domains of EcoRII. Nucleic Acids Res 2009;37(19):6613. DOI: 10.1093/NAR/GKP699.
  135. Iida S, Streiff MB, Bickle TA, et al. Two DNA antirestriction systems of bacteriophage P1, darA, and darB: Characterization of darA-phages. Virology 1987;157(1):156–166. DOI: 10.1016/0042-6822(87)90324-2.
  136. Zavilgelsky GB, Kotova VY. Antirestriction activity of the monomeric and dimeric forms of T7 Ocr. Mol Biol 2014;48(1):150–157. DOI: 10.1134/S0026893313060174.
  137. Hill C, Miller LA, Klaenhammer TR. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol 1991;173(14):4363–4370. DOI: 10.1128/JB.173.14.4363-4370.1991.
  138. Malone LM, Birkholz N, Fineran PC. Conquering CRISPR: How phages overcome bacterial adaptive immunity. Curr Opin Biotechnol 2021;68:30–36. DOI: 10.1016/J.COPBIO.2020.09.008.
  139. Tao P, Wu X, Rao V. Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9. Sci Adv 2018;4(2). DOI: 10.1126/SCIADV.AAR4134.
  140. Stanley SY, Maxwell KL. Phage-Encoded Anti-CRISPR Defenses. Annu Rev Genet 2018;52:445–464. DOI: 10.1146/ANNUREV-GENET-120417-031321.
  141. Blower TR, Evans TJ, Przybilski R, et al. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet 2012;8(10):e1003023. DOI: 10.1371/JOURNAL.PGEN.1003023.
  142. Otsuka Y, Yonesaki T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol Microbiol 2012;83(4):669–681. DOI: 10.1111/J.1365-2958.2012.07975.X.
  143. Samson JE, Bélanger M, Moineau S. Effect of the abortive infection mechanism and Type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J Bacteriol 2013;195(17):3947. DOI: 10.1128/JB.00296-13.
  144. Bingham R, Ekunwe SIN, Falk S, et al. The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. J Biol Chem 2000;275(30):23219–23226. DOI: 10.1074/JBC.M0025 46200.
  145. Isaev A, Drobiazko A, Sierro N, et al. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res 2020;48(10):5397–5406. DOI: 10.1093/NAR/GKAA290.
  146. Townsend EM, Kelly L, Muscatt G, et al. The human gut phageome: origins and roles in the human gut microbiome. Front Cell Infect Microbiol 2021;11:643214. DOI: 10.3389/FCIMB.2021.643214/BIBTEX.
  147. de Abreu VAC, Perdigão J, Almeida S. Metagenomic approaches to analyze antimicrobial resistance: an overview. Front Genet 2021;11:575592. DOI: 10.3389/FGENE.2020.575592/BIBTEX.
  148. Sukhum KV, Diorio-Toth L, Dantas G. Genomic and metagenomic approaches for predictive surveillance of emerging pathogens and antibiotic resistance. Clin Pharmacol Ther 2019;106(3):512–524. DOI: 10.1002/CPT.1535.
  149. Churko JM, Mantalas GL, Snyder MP, et al. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res 2013;112(12):1613–1623. DOI: 10.1161/CIRCRESAHA.113.300939.
  150. Pires DP, Melo LDR, Vilas Boas D, et al. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 2017;39:48–56. DOI: 10.1016/J.MIB.2017.09.004.
  151. Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002;418(6900):884–889. DOI: 10.1038/nature01026.
  152. Mulani MS, Kamble EE, Kumkar SN, et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019;10:403107. DOI: 10.3389/FMICB.2019.00539/BIBTEX.
  153. Torres-Barceló C, Hochberg ME. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 2016;24(4):249–256. DOI: 10.1016/j.tim.2015.12.011.
  154. Motlagh AM, Bhattacharjee AS, Goel R. Biofilm control with natural and genetically-modified phages. World J Microbiol Biotechnol 2016;32(4):1–10. DOI: 10.1007/S11274-016-2009-4.
  155. Abedon ST. Phage-Antibiotic combination treatments: Antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics 2019;8(4):182. DOI: 10.3390/ANTIBIOTICS8040182.
  156. Liu CG, Green SI, Min L, et al. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio 2020;11(4):1–19. DOI: 10.1128/MBIO.01462-20/SUPPL_FILE/MBIO.01462-20-SF005.TIF.
  157. Principi N, Silvestri E, Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 2019;10(MAY):457104. DOI: 10.3389/FPHAR.2019.00513/BIBTEX.
  158. Blanco-Picazo P, Fernández-Orth D, Brown-Jaque M, et al. Unravelling the consequences of the bacteriophages in human samples. Sci Rep 2020;10(1):1–10. DOI: 10.1038/s41598-020-63432-7.
  159. Qi H, Lu H, Qiu HJ, et al. Phagemid vectors for phage display: Properties, characteristics and construction. J Mol Biol 2012;417(3):129–143. DOI: 10.1016/J.JMB.2012.01.038.
  160. Ish-Horowicz D, Burke JF. Rapid and efficient cosmid cloning. Nucleic Acids Res 1981;9(13):2989. DOI: 10.1093/NAR/9.13.2989.
  161. Verbeken G, Pirnay JP, Lavigne R, et al. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp (Warsz) 2014;62(2):117–129. DOI: 10.1007/S00005-014-0269-Y/FIGURES/2.
  162. Yilmaz C, Colak M, Yilmaz BC, et al. Bacteriophage therapy in implant-related infections: An experimental study. J Bone Joint Surg Am 2013;95(2):117–125. DOI: 10.2106/JBJS.K.01135.
  163. Kortright KE, Chan BK, Koff JL, et al. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019;25(2):219–232. DOI: 10.1016/J.CHOM.2019.01.014.
  164. Sybesma W, Rohde C, Bardy P, et al. Silk route to the acceptance and re-implementation of bacteriophage therapy-Part II. Antibiotics (Basel) 2018;7(2). DOI: 10.3390/ANTIBIOTICS7020035.
  165. Pirnay JP, Verbeken G, Ceyssens PJ, et al. The magistral phage. Viruses 2018;10(2):64. DOI: 10.3390/V10020064.
  166. Brown R, Lengeling A, Wang B. Phage engineering: How advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quant Biol 2017;5(1):42–54. DOI: 10.1007/S40484-017-0094-5.
  167. Kutter E, De Vos D, Gvasalia G, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 2010;11(1): 69–86. DOI: 10.2174/138920110790725401.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.