Newborn

Register      Login

VOLUME 2 , ISSUE 4 ( October-December, 2023 ) > List of Articles

REVIEW ARTICLE

Organic Acidemias: Clinical Presentation in Neonates

Monika Kaushal, Gayatri Athalye-Jape, Mohammad Mozibur Rahman, Mario Motta

Keywords : 2-methyl glutaconate, 2-oxo-3-methylvaleric acid, 2-oxoisocaproic acid,3-hydroxy propionate, 3-hydroxy-2-ethyl glutarate, 3-hydroxy-3-methylglutaryl-CoA, 3-hydroxybutyrate, 3-hydroxyisovaleric acid, 3-keto-2-methylbutyrate, 3-keto-2-methylvalerate-methyl citrate, 3-methyl crotonyl glycine, 3-methylcrotonyl-CoA carboxylase, 3-methylcrotonylglycinuria, 3-methylglutaconic aciduria, 3-OH propionic acid, Alanine, Alloisoleucine, Amish, Ammonium scavenger, Anion gap, Barth syndrome, Basal ganglion hyperdensity, Biotinidase, Biotinidase deficiency, Branched-chain amino acids, Branched-chain organic acidemias, Canadian Dariusleut-Hutterite ethnicity, Canavan disease, Carbonic anhydrase-5a deficiency, Cardiomyopathy, Carglumic acid, CbIB – disease, CbIC-disease, CbID disease, CBIE disease, CbIF disease, CbIG disease, D2-hydroxybutyric aciduria, DNAJC19 gene, Expanded newborn screening, Extrapyramidal movement disorders, Fatty acid oxidation disorder, Gas chromatography-mass spectrometry, Glutaric acidemia type 1, Gl

Citation Information : Kaushal M, Athalye-Jape G, Rahman MM, Motta M. Organic Acidemias: Clinical Presentation in Neonates. 2023; 2 (4):263-278.

DOI: 10.5005/jp-journals-11002-0080

License: CC BY-NC 4.0

Published Online: 05-01-2024

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Organic acidemias (OAs) are heritable genomic abnormalities characterized by the absence or defects in critical enzyme(s), which result in the accumulation of abnormal and toxic organic acid metabolites. These metabolites can be detected in blood and/or urine in high levels. Organic acidemias can have severe clinical manifestations, where most patients become symptomatic within the neonatal period or early infancy. Mildly affected cases may present later during adolescence or adulthood following decompensation during illness, following surgery, or with prolonged fasting. Acute clinical presentations include liver failure, lethargy, altered sensorium (encephalopathy), and/or seizures in the acute phase; subacute/delayed manifestations may include failure to thrive, developmental delay, and/or cardiomyopathy. In neonates, differential diagnoses include sepsis, metabolic disturbances, and intracranial bleeding. A high index of suspicion is essential for early, timely diagnosis. This article seeks to provide consolidated information on OAs, including pathogenesis, clinical presentation, diagnosis, and contemporary management.


PDF Share
  1. Ramsay J, Morton J, Norris M, et al. Organic acid disorders. Ann Transl Med 2018;6(24):472. DOI: 10.21037/atm.2018.12.39.
  2. Dimitrov B, Molema F, Williams M, et al. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021;44(1):9–21. DOI: 10.1002/jimd.12254.
  3. Md AN. Neonatal Presentations of Metabolic Disorders. Neoreviews 2020;21(10):e649–e662. DOI: 10.1542/neo.21-10-e649.
  4. Vaidyanathan K, Narayanan MP, Vasudevan DM. Organic acidurias: An updated review. Indian J Clin Biochem 2011;26(4):319–325. DOI: 10.1007/s12291-011-0134-2.
  5. Baumgartner MR, Horster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 2014;9:130. DOI: 10.1186/s13023-014-0130-8.
  6. Villani GR, Gallo G, Scolamiero E, et al. Classical organic acidurias: Diagnosis and pathogenesis. Clin Exp Med 2017;17(3):305–323. DOI: 10.1007/s10238-016-0435-0.
  7. Boy N, Muhlhausen C, Maier EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017;40(1):75–101. DOI: 10.1007/s10545-016-9999-9.
  8. Ogier de Baulny H, Saudubray JM. Branched-chain organic acidurias. Semin Neonatol 2002;7(1):65–74. DOI: 10.1053/siny.2001.0087.
  9. Manoli I, Sloan JL, Venditti CP. Isolated Methylmalonic Acidemia. 2022. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle.
  10. Shchelochkov OA, Carrillo N, Venditti CP. Propionic Acidemia. 2016. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle.
  11. Vockley J, Ensenauer R. Isovaleric acidemia: New aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet 2006;142C(2):95–103. DOI: 10.1002/ajmg.c.30089.
  12. Wortmann SB, Kluijtmans LA, Engelke UF, et al. The 3-methylglutaconic acidurias: what's new? J Inherit Metab Dis 2012;35(1):13–22. DOI: 10.1007/s10545-010-9210-7.
  13. Gallardo ME, Desviat LR, Rodriguez JM, et al. The molecular basis of 3-methylcrotonylglycinuria, a disorder of leucine catabolism. Am J Hum Genet 2001;68(2):334–346. DOI: 10.1086/318202.
  14. Wolf B, Hsia YE, Sweetman L, et al. Multiple carboxylase deficiency: Clinical and biochemical improvement following neonatal biotin treatment. Pediatrics 1981;68(1):113–118. PMID: 6787561.
  15. Donti TR, Blackburn PR, Atwal PS. Holocarboxylase synthetase deficiency pre and post newborn screening. Mol Genet Metab Rep 2016;7:40–44. DOI: 10.1016/j.ymgmr.2016.03.007.
  16. Wolf B. Biotinidase deficiency: If you have to have an inherited metabolic disease, this is the one to have. Genet Med 2012;14(6): 565–575. DOI: 10.1038/gim.2011.6.
  17. Reddy N, Calloni SF, Vernon HJ, et al. Neuroimaging Findings of Organic Acidemias and Aminoacidopathies. Radiographics 2018;38(3):912–931. DOI: 10.1148/rg.2018170042.
  18. Kolker S, Christensen E, Leonard JV, et al. Diagnosis and management of glutaric aciduria type I–revised recommendations. J Inherit Metab Dis 2011;34(3):677–694. DOI: 10.1007/s10545-011-9289-5.
  19. Wijayasinghe YS, Pavlovsky AG, Viola RE. Aspartoacylase catalytic deficiency as the cause of Canavan disease: A structural perspective. Biochemistry 2014;53(30):4970–4978. DOI: 10.1021/bi500719k.
  20. Kim YG, Lee S, Kwon OS, et al. Redox-switch modulation of human SSADH by dynamic catalytic loop. EMBO J 2009;28(7):959–968. DOI: 10.1038/emboj.2009.40.
  21. Didiasova M, Banning A, Brennenstuhl H, et al. Succinic semialdehyde dehydrogenase deficiency: An update. Cells 2020;9(2). DOI: 10.3390/cells9020477.
  22. Seashore MR. The organic acidemias: An overview 2009. In: GeneReviews [Internet]. Seattle: University of Washington, Seattle.
  23. Wajner M. Neurological manifestations of organic acidurias. Nat Rev Neurol 2019;15(5):253–271. DOI: 10.1038/s41582-019-0161-9.
  24. Chapman KA, Gropman A, MacLeod E, et al. Acute management of propionic acidemia. Mol Genet Metab 2012;105(1):16–25. DOI: 10.1016/j.ymgme.2011.09.026.
  25. Byers SL, Ficicioglu C. Infant with cardiomyopathy: When to suspect inborn errors of metabolism? World J Cardiol 2014;6(11):1149–55. DOI: 10.4330/wjc.v6.i11.1149.
  26. Fraser JL, Venditti CP. Methylmalonic and propionic acidemias: Clinical management update. Curr Opin Pediatr 2016;28(6):682–93. DOI: 10.1097/MOP.0000000000000422.
  27. Therrell BL, Padilla CD, Loeber JG, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol 2015;39(3):171–87. DOI: 10.1053/j.semperi.2015.03.002.
  28. Watson MS, Lloyd-Puryear MA, Howell RR. The progress and future of US newborn screening. Int J Neonatal Screen 2022;18;8(3):41. DOI: 10.3390/ijns8030041.
  29. Tuncel AT, Boy N, Morath MA, et al. Organic acidurias in adults: Late complications and management. J Inherit Metab Dis 2018;41(5): 765–776. DOI: 10.1007/s10545-017-0135-2.
  30. Mosleh T, Dey SK, Mannan MA. A Case of Organic Acidemia: Are Physicians Aware Enough? Euroasian J Hepatogastroenterol 2016;6(1):89–90. DOI: 10.5005/jp-journals-10018-1175.
  31. Afzal RM, Lund AM, Skovby F. The impact of consanguinity on the frequency of inborn errors of metabolism. Mol Genet Metab Rep 2018;15:6–10. DOI: 10.1016/j.ymgmr.2017.11.004.
  32. Sudo Y, Sasaki A, Wakabayashi T, et al. A novel ETFB mutation in a patient with glutaric aciduria type II. Hum Genome Var 2015;1:15016. DOI: 10.1038/hgv.2015.16.
  33. Balakrishnan U. Inborn errors of metabolism-approach to diagnosis and management in neonates. Indian J Pediatr 2021;88(7):679–689. DOI: 10.1007/s12098-021-03759-9.
  34. Haberle J, Chakrapani A, Ah Mew N, et al. Hyperammonaemia in classic organic acidaemias: A review of the literature and two case histories. Orphanet J Rare Dis 2018;13(1):219. DOI: 10.1186/s13023-018-0963-7.
  35. Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 1991;119(5):738–747. DOI: 10.1016/s0022-3476(05)80289-6.
  36. Schillaci LP, DeBrosse SD, McCandless SE. Inborn errors of metabolism with acidosis: Organic acidemias and defects of pyruvate and ketone body metabolism. Pediatr Clin North Am 2018;65(2):209–230. DOI: 10.1016/j.pcl.2017.11.003.
  37. Fu X, Iga M, Kimura M, et al. Simplified screening for organic acidemia using GC/MS and dried urine filter paper: A study on neonatal mass screening. Early Hum Dev 2000;58(1):41–55. DOI: 10.1016/s0378-3782(00)00053-0.
  38. Wajner M, Sitta A, Kayser A, et al. Screening for organic acidurias and aminoacidopathies in high-risk Brazilian patients: Eleven-year experience of a reference center. Genet Mol Biol 2019;42(1 suppl 1): 178–185. DOI: 10.1590/1678-4685-GMB-2018-0105.
  39. Webb BD, Nowinski SM, Solmonson A, et al. Recessive pathogenic variants in MCAT cause combined oxidative phosphorylation deficiency. Elife 2023;12. DOI: 10.7554/eLife12:e68047.
  40. Van Cauter S, Severino M, Ammendola R, et al. Bilateral lesions of the basal ganglia and thalami (central grey matter)-pictorial review. Neuroradiology 2020;62(12):1565–1605. DOI: 10.1007/s00234-020-02511-y.
  41. Brismar J, Ozand PT. CT and MR of the brain in the diagnosis of organic acidemias. Experiences from 107 patients. Brain Dev 1994;16 Suppl:104–124. DOI: 10.1016/0387-7604(94)90103-1.
  42. Maliia MD, Donos C, Barborica A, et al. Functional mapping and effective connectivity of the human operculum. Cortex 2018;109: 303–321. DOI: 10.1016/j.cortex.2018.08.024.
  43. Gallagher RC, Pollard L, Scott AI, et al. Laboratory analysis of organic acids, 2018 update: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018;20(7): 683–691. DOI: 10.1038/gim.2018.45.
  44. Alberola TM, Bautista-Llacer R, Vendrell X, et al. Case report: Birth of healthy twins after preimplantation genetic diagnosis of propionic acidemia. J Assist Reprod Genet 2011;28(3):211–216. DOI: 10.1007/s10815-010-9514-4.
  45. Ding S, Liang L, Qiu W, et al. Prenatal Diagnosis of Isovaleric Acidemia From Amniotic Fluid Using Genetic and Biochemical Approaches. Front Genet 2022;13:898860. DOI: 10.3389/fgene.2022.898860.
  46. Xiao B, Qiu W, Ye J, et al. Prenatal Diagnosis of Glutaric Acidemia I Based on Amniotic Fluid Samples in 42 Families Using Genetic and Biochemical Approaches. Front Genet 2020;11:496. DOI: 10.3389/fgene.2020.00496.
  47. Tanacan A, Gurbuz BB, Aydin E, et al. Prenatal Diagnosis of Organic Acidemias at a Tertiary Center. Balkan J Med Genet 2019;22(1):29–34. DOI: 10.2478/bjmg-2019-0003.
  48. Tiwana SK, Rascati KL, Park H. Cost-effectiveness of expanded newborn screening in Texas. Value Health 2012;15(5):613–621. DOI: 10.1016/j.jval.2012.02.007.
  49. Baker PR 2nd. Recognizing and Managing a Metabolic Crisis. Pediatr Clin North Am 2023;70(5):979–993. DOI: 10.1016/j.pcl.2023.05.009.
  50. Guerrero RB, Salazar D, Tanpaiboon P. Laboratory diagnostic approaches in metabolic disorders. Ann Transl Med 2018;6(24):470. DOI: 10.21037/atm.2018.11.05.
  51. Maiorana A, Lepri FR, Novelli A, et al. Hypoglycaemia metabolic gene panel testing. Front Endocrinol (Lausanne) 2022;13:826167. DOI: 10.3389/fendo.2022.826167.
  52. Seifter JL. Anion-gap metabolic acidemia: Case-based analyses. Eur J Clin Nutr 2020;74(Suppl 1):83–86. DOI: 10.1038/s41430-020-0685-5.
  53. Shakerdi LA, Gillman B, Corcoran E, et al. Organic aciduria disorders in pregnancy: An overview of metabolic considerations. Metabolites 2023;13(4). DOI: 10.3390/metabo13040518.
  54. Chakrapani A, Valayannopoulos V, Segarra NG, et al. Effect of carglumic acid with or without ammonia scavengers on hyperammonaemia in acute decompensation episodes of organic acidurias. Orphanet J Rare Dis 2018;13(1):97. DOI: 10.1186/s13023-018-0840-4.
  55. Levrat V, Forest I, Fouilhoux A, et al. Carglumic acid: An additional therapy in the treatment of organic acidurias with hyperammonemia? Orphanet J Rare Dis 2008;3:2. DOI: 10.1186/1750-1172-3-2.
  56. Gugelmo G, Lenzini L, Francini-Pesenti F, et al. Anthropometrics, Dietary Intake and Body Composition in Urea Cycle Disorders and Branched Chain Organic Acidemias: A Case Study of 18 Adults on Low-Protein Diets. Nutrients 2022;14(3). DOI: 10.3390/nu14030467.
  57. Forny P, Horster F, Ballhausen D, et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021;44(3):566–592. DOI: 10.1002/jimd.12370.
  58. Mobarak A, Dawoud H, Nofal H, et al. Clinical course and nutritional management of propionic and methylmalonic acidemias. J Nutr Metab 2020;2020:8489707. DOI: 10.1155/2020/8489707.
  59. de Lonlay P, Valayannopoulos V, Arnoux JB, et al. [Diagnostic and therapeutic management of inherited metabolic diseases in emergency and intensive care unit]. Arch Pediatr 2010;17(6):947–948. DOI: 10.1016/S0929-693X(10)70192-5.
  60. Sperl W. Diagnosis and therapy of organic acidurias. Padiatr Padol 1993;28(1):3–8. PMID: 8446425.
  61. Blackburn PR, Gass JM, Vairo FPE, et al. Maple syrup urine disease: Mechanisms and management. Appl Clin Genet 2017;10:57–66. DOI: 10.2147/TACG.S125962.
  62. Campanholi DRR, Margutti AVB, Silva WA Jr., et al. Molecular basis of various forms of maple syrup urine disease in Chilean patients. Mol Genet Genomic Med 2021;9(5):e1616. DOI: 10.1002/mgg3.1616.
  63. Strauss KA, Puffenberger EG, Carson VJ. Maple Syrup Urine Disease 2020. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle.
  64. Puffenberger EG. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am J Med Genet C Semin Med Genet 2003;121C(1):18–31. DOI: 10.1002/ajmg.c.20003.
  65. Love-Gregory LD, Grasela J, Hillman RE, et al. Evidence of common ancestry for the maple syrup urine disease (MSUD) Y438N allele in non-Mennonite MSUD patients. Mol Genet Metab 2002;75(1):79–90. DOI: 10.1006/mgme.2001.3264.
  66. Schadewaldt P, Bodner-Leidecker A, Hammen HW, et al. Significance of L-alloisoleucine in plasma for diagnosis of maple syrup urine disease. Clin Chem 1999;45(10):1734–1740. PMID: 10508118.
  67. Hassan SA, Gupta V. Maple Syrup Urine Disease. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
  68. Ali EZ, Ngu LH. Fourteen new mutations of BCKDHA, BCKDHB and DBT genes associated with maple syrup urine disease (MSUD) in Malaysian population. Mol Genet Metab Rep 2018;17:22–30. DOI: 10.1016/j.ymgmr.2018.08.006.
  69. Podebrad F, Heil M, Reichert S, et al. 4,5-dimethyl-3-hydroxy-2[5H]-furanone (sotolone–the odour of maple syrup urine disease. J Inherit Metab Dis. 1999;22(2):107–114. DOI: 10.1023/a:1005433516026.
  70. Lin YT, Cai YN, Ting TH, et al. Diagnosis of an intermediate case of maple syrup urine disease: A case report. World J Clin Cases 2023;11(5):1077–1085. DOI: 10.12998/wjcc.v11.i5.1077.
  71. Rawal S, Faghfoury H, Krings T. MRI findings of adult maple syrup urine disease exacerbation. Can J Neurol Sci 2013;40(2):259–262. DOI: 10.1017/s0317167100013858.
  72. Chuang DT, Ku LS, Cox RP. Thiamin-responsive maple-syrup-urine disease: Decreased affinity of the mutant branched-chain alpha-keto acid dehydrogenase for alpha-ketoisovalerate and thiamin pyrophosphate. Proc Natl Acad Sci U S A 1982;79(10):3300–3304. DOI: 10.1073/pnas.79.10.3300.
  73. Quinonez SC, Seeley AH, Seeterlin M, et al. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte. Mol Genet Metab Rep 2014;1:345–349. DOI: 10.1016/j.ymgmr.2014.07.007.
  74. Piri-Moghadam H, Miller A, Pronger D, et al. A rapid LC-MS/MS assay for detection and monitoring of underivatized branched-chain amino acids in maple syrup urine disease. J Mass Spectrom Adv Clin Lab 2022;24:107–117. DOI: 10.1016/j.jmsacl.2022.04.003.
  75. Frazier DM, Allgeier C, Homer C, et al. Nutrition management guideline for maple syrup urine disease: an evidence - and consensus-based approach. Mol Genet Metab 2014;112(3):210–217. DOI: 10.1016/j.ymgme.2014.05.006.
  76. Strauss KA, Wardley B, Robinson D, et al. Classical maple syrup urine disease and brain development: Principles of management and formula design. Mol Genet Metab 2010;99(4):333–345. DOI: 10.1016/j.ymgme.2009.12.007.
  77. Puliyanda DP, Harmon WE, Peterschmitt MJ, et al. Utility of hemodialysis in maple syrup urine disease. Pediatr Nephrol 2002;17(4):239–242. DOI: 10.1007/s00467-001-0801-2.
  78. Thimm E, Hadzik B, Hohn T. Continuous venovenous hemofiltration rapidly lowers toxic metabolites in a patient with MSUD and imminent cerebral herniation. Klin Padiatr 2010;222(4):264–265. DOI: 10.1055/s-0030-1247508.
  79. Wendel U, Langenbeck U, Lombeck I, et al. Exchange transfusion in acute episodes of maple syrup urine disease. Studies on branched-chain amino and keto acids. Eur J Pediatr 1982;138(4):293–296. DOI: 10.1007/BF00442499.
  80. Mazariegos GV, Morton DH, Sindhi R, et al. Liver transplantation for classical maple syrup urine disease: Long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J Pediatr 2012;160(1):116–121 e1. DOI: 10.1016/j.jpeds.2011.06.033.
  81. Shellmer DA, DeVito Dabbs A, Dew MA, et al. Cognitive and adaptive functioning after liver transplantation for maple syrup urine disease: A case series. Pediatr Transplant 2011;15(1):58–64. DOI: 10.1111/j.1399-3046.2010.01411.x.
  82. Tchan M, Westbrook M, Wilcox G, et al. The management of pregnancy in maple syrup urine disease: experience with two patients. JIMD Rep 2013;10:113–117. DOI: 10.1007/8904_2013_212.
  83. Pontoizeau C, Simon-Sola M, Gaborit C, et al. Neonatal gene therapy achieves sustained disease rescue of maple syrup urine disease in mice. Nat Commun 2022;13(1):3278. DOI: 10.1038/s41467-022-30880-w.
  84. Kose M, Canda E, Kagnici M, et al. A Patient with MSUD: Acute management with sodium phenylacetate/sodium benzoate and sodium phenylbutyrate. Case Rep Pediatr 2017;2017:1045031. DOI: 10.1155/2017/1045031.
  85. Zhou X, Cui Y, Han J. Methylmalonic acidemia: Current status and research priorities. Intractable Rare Dis Res 2018;7(2):73–78. DOI: 10.5582/irdr.2018.01026.
  86. Waisbren SE. Review of neuropsychological outcomes in isolated methylmalonic acidemia: Recommendations for assessing impact of treatments. Metab Brain Dis 2022;37(5):1317–1335. DOI: 10.1007/s11011-022-00954-1.
  87. Sloan JL, Carrillo N, Adams D, et al. Disorders of Intracellular Cobalamin Metabolism. 2021. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle.
  88. Buers I, Pennekamp P, Nitschke Y, et al. Lmbrd1 expression is essential for the initiation of gastrulation. J Cell Mol Med 2016;20(8):1523–1533. DOI: 10.1111/jcmm.12844.
  89. Paul C, Brady DM. Comparative Bioavailability and Utilization of Particular Forms of B(12) Supplements With Potential to Mitigate B(12)-related Genetic Polymorphisms. Integr Med (Encinitas) 2017;16(1):42–49. PMID: 28223907.
  90. Takahashi-Iniguez T, Garcia-Hernandez E, Arreguin-Espinosa R, et al. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J Zhejiang Univ Sci B 2012;13(6):423–437. DOI: 10.1631/jzus.B1100329.
  91. Jin L, Han X, He F, et al. Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: A meta-analyse. J Matern Fetal Neonatal Med 2022;35(25):8952–8967. DOI: 10.1080/14767058.2021.2008351.
  92. Jiang YZ, Sun LY. The Value of Liver Transplantation for Methylmalonic Acidemia. Front Pediatr 2019;7:87. DOI: 10.3389/fped.2019.00087.
  93. Hedlund GL, Longo N, Pasquali M. Glutaric acidemia type 1. Am J Med Genet C Semin Med Genet 2006;142C(2):86-94. DOI: 10.1002/ajmg.c.30088.
  94. Chen T, Gao Y, Zhang S, et al. Methylmalonic acidemia: Neurodevelopment and neuroimaging. Front Neurosci 2023;17:1110942. DOI: 10.3389/fnins.2023.1110942.
  95. Al-Hamed MH, Imtiaz F, Al-Hassnan Z, et al. Spectrum of mutations underlying Propionic acidemia and further insight into a genotype-phenotype correlation for the common mutation in Saudi Arabia. Mol Genet Metab Rep 2019;18:22–29. DOI: 10.1016/j.ymgmr.2018.12.004.
  96. Li Y, Wang M, Huang Z, et al. Novel compound heterozygous variants in the PCCB gene causing adult-onset propionic acidemia presenting with neuropsychiatric symptoms: A case report and literature review. BMC Med Genomics 2022;15(1):59. DOI: 10.1186/s12920-022-01202-2.
  97. Yang X, Sakamoto O, Matsubara Y, et al. Mutation spectrum of the PCCA and PCCB genes in Japanese patients with propionic acidemia. Mol Genet Metab 2004;81(4):335–342. DOI: 10.1016/j.ymgme.2004.01.003.
  98. Lucke T, Perez-Cerda C, Baumgartner M, et al. Propionic acidemia: Unusual course with late onset and fatal outcome. Metabolism 2004;53(6):809–810. DOI: 10.1016/j.metabol.2003.12.025.
  99. van Karnebeek CD, Sly WS, Ross CJ, et al. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am J Hum Genet 2014;94(3):453–461. DOI: 10.1016/j.ajhg.2014.01.006.
  100. Canda E, Ucar SK, Coker M. Biotinidase deficiency: Prevalence, impact and management strategies. Pediatric Health Med Ther 2020;11:127–133. DOI: 10.2147/PHMT.S198656.
  101. Stanescu S, Belanger-Quintana A, Fernandez-Felix BM, et al. Severe anemia in patients with propionic acidemia is associated with branched-chain amino acid imbalance. Orphanet J Rare Dis 2021;16(1):226. DOI: 10.1186/s13023-021-01865-7.
  102. Alexopoulos SP, Matsuoka L, Hafberg E, et al. Liver transplantation for propionic acidemia: A multicenter-linked database analysis. J Pediatr Gastroenterol Nutr 2020;70(2):178–182. DOI: 10.1097/MPG.0000000000002534.
  103. Grunert SC, Mullerleile S, De Silva L, et al. Propionic acidemia: Clinical course and outcome in 55 pediatric and adolescent patients. Orphanet J Rare Dis 2013;8:6. DOI: 10.1186/1750-1172-8-6.
  104. Mutze U, Henze L, Gleich F, et al. Newborn screening and disease variants predict neurological outcome in isovaleric aciduria. J Inherit Metab Dis 2021;44(4):857–870. DOI: 10.1002/jimd.12364.
  105. Mutze U, Henze L, Schroter J, et al. Isovaleric aciduria identified by newborn screening: Strategies to predict disease severity and stratify treatment. J Inherit Metab Dis 2023. DOI: 10.1002/jimd.12653.
  106. Zhao Y, Zhu S, Huang X. [Current understanding and progress of research on isovaleric acidemia]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2022;39(1):99–102. DOI: 10.3760/cma.j.cn511374-20200616-00443.
  107. Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 2004;75(6):1136–1142. DOI: 10.1086/426318.
  108. Schlune A, Riederer A, Mayatepek E, et al. Aspects of Newborn Screening in Isovaleric Acidemia. Int J Neonatal Screen 2018;4(1):7. DOI: 10.3390/ijns4010007.
  109. Dubiel B, Dabrowski C, Wetts R, et al. Complementation studies of isovaleric acidemia and glutaric aciduria type II using cultured skin fibroblasts. J Clin Invest 1983;72(5):1543–1552. DOI: 10.1172/JCI111113.
  110. Chinen Y, Nakamura S, Tamashiro K, et al. Isovaleric acidemia: Therapeutic response to supplementation with glycine, l-carnitine, or both in combination and a 10-year follow-up case study. Mol Genet Metab Rep 2017;11:2–5. DOI: 10.1016/j.ymgmr.2017.03.002.
  111. Nizon M, Ottolenghi C, Valayannopoulos V, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis 2013;8:148. DOI: 10.1186/1750-1172-8-148.
  112. Arnold GL, Salazar D, Neidich JA, et al. Outcome of infants diagnosed with 3-methyl-crotonyl-CoA-carboxylase deficiency by newborn screening. Mol Genet Metab 2012;106(4):439-41. DOI: 10.1016/j.ymgme.2012.04.006.
  113. Forsyth R, Vockley CW, Edick MJ, et al. Outcomes of cases with 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency - Report from the Inborn Errors of Metabolism Information System. Mol Genet Metab 2016;118(1):15-20. DOI: 10.1016/j.ymgme.2016.02.002.
  114. Grunert SC, Stucki M, Morscher RJ, et al. 3-methylcrotonyl-CoA carboxylase deficiency: Clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet J Rare Dis 2012;7:31. DOI: 10.1186/1750-1172-7-31.
  115. Suormala T, Fowler B, Duran M, et al. Five patients with a biotin-responsive defect in holocarboxylase formation: Evaluation of responsiveness to biotin therapy in vivo and comparative biochemical studies in vitro. Pediatr Res 1997;41(5):666–673. DOI: 10.1203/00006450-199705000-00011.
  116. Ingaramo M, Beckett D. Distinct amino termini of two human HCS isoforms influence biotin acceptor substrate recognition. J Biol Chem 2009;284(45):30862-70. DOI: 10.1074/jbc.M109.046201.
  117. Cozzolino C, Villani GR, Frisso G, et al. Biochemical and molecular characterization of 3-Methylcrotonylglycinuria in an Italian asymptomatic girl. Genet Mol Biol 2018;41(2):379–385. DOI: 10.1590/1678-4685-GMB-2017-0093.
  118. Friebel D, von der Hagen M, Baumgartner ER, et al. The first case of 3-methylcrotonyl-CoA carboxylase (MCC) deficiency responsive to biotin. Neuropediatrics 2006;37(2):72–78. DOI: 10.1055/s-2006-924024.
  119. Thomsen JA, Lund AM, Olesen JH, et al. Is L-carnitine supplementation beneficial in 3-methylcrotonyl-CoA carboxylase deficiency? JIMD Rep 2015;21:79–88. DOI: 10.1007/8904_2014_393.
  120. Gunay-Aygun M. 3-Methylglutaconic aciduria: a common biochemical marker in various syndromes with diverse clinical features. Mol Genet Metab 2005;84(1):1–3. DOI: 10.1016/j.ymgme.2004.12.003.
  121. Jones DE, Jennings EA, Ryan RO. Diversion of Acetyl CoA to 3-Methylglutaconic Acid Caused by Discrete Inborn Errors of Metabolism. Metabolites 2022;12(5). DOI: 10.3390/metabo12050377.
  122. Jones DE, Klacking E, Ryan RO. Inborn errors of metabolism associated with 3-methylglutaconic aciduria. Clin Chim Acta 2021;522:96–104. DOI: 10.1016/j.cca.2021.08.016.
  123. Spergel CD, Milko M, Edwards C, et al. 3-Methylglutaconyl-Coenzyme-A Hydratase Deficiency and the Development of Dilated Cardiomyopathy. Cardiol Res 2014;5(5):158–162. DOI: 10.14740/cr359w.
  124. Hertzog A, Selvanathan A, Pandithan D, et al. 3-Methylglutaconyl-CoA hydratase deficiency: When ascertainment bias confounds a biochemical diagnosis. JIMD Rep 2022;63(6):568–574. DOI: 10.1002/jmd2.12332.
  125. Clarke SL, Bowron A, Gonzalez IL, et al. Barth syndrome. Orphanet J Rare Dis 2013;8:23. DOI: 10.1186/1750-1172-8-23.
  126. Chin MT, Conway SJ. Role of Tafazzin in Mitochondrial Function, Development and Disease. J Dev Biol 2020;8(2). DOI: 10.3390/jdb8020010.
  127. Schlame M. Cardiolipin remodeling and the function of tafazzin. Biochim Biophys Acta 2013;1831(3):582–588. DOI: 10.1016/j.bbalip.2012.11.007.
  128. Finsterer J. Barth syndrome: Mechanisms and management. Appl Clin Genet 2019;12:95–106. DOI: 10.2147/TACG.S171481.
  129. Maheshwari A. Neutropenia in the newborn. Curr Opin Hematol 2014;21(1):43–49. DOI: 10.1097/MOH.0000000000000010.
  130. Ferri L, Donati MA, Funghini S, et al. New clinical and molecular insights on Barth syndrome. Orphanet J Rare Dis 2013;8:27. DOI: 10.1186/1750-1172-8-27.
  131. Steward CG, Groves SJ, Taylor CT, et al. Neutropenia in Barth syndrome: Characteristics, risks, and management. Curr Opin Hematol 2019;26(1):6–15. DOI: 10.1097/MOH.0000000000000472.
  132. Yahalom G, Anikster Y, Huna-Baron R, et al. Costeff syndrome: Clinical features and natural history. J Neurol 2014;261(12):2275–2282. DOI: 10.1007/s00415-014-7481-x.
  133. Ho G, Walter JH, Christodoulou J. Costeff optic atrophy syndrome: New clinical case and novel molecular findings. J Inherit Metab Dis 2008;31 Suppl 2:S419–S423. DOI: 10.1007/s10545-008-0981-z.
  134. Anikster Y, Kleta R, Shaag A, et al. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): Identification of the OPA3 gene and its founder mutation in Iraqi Jews. Am J Hum Genet 2001;69(6):1218–1224. DOI: 10.1086/324651.
  135. Wortmann SB, Rodenburg RJ, Jonckheere A, et al. Biochemical and genetic analysis of 3-methylglutaconic aciduria type IV: A diagnostic strategy. Brain 2009;132(Pt 1):136–146. DOI: 10.1093/brain/awn296.
  136. Al Tuwaijri A, Alyafee Y, Alharbi M, et al. Novel homozygous pathogenic mitochondrial DNAJC19 variant in a patient with dilated cardiomyopathy and global developmental delay. Mol Genet Genomic Med 2022;10(8):e1969. DOI: 10.1002/mgg3.1969.
  137. Richter-Dennerlein R, Korwitz A, Haag M, et al. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab 2014;20(1):158–171. DOI: 10.1016/j.cmet.2014.04.016.
  138. Morgan K, Holmes TM, Schlaut J, et al. Genetic variability of HLA in the Dariusleut Hutterites. A comparative genetic analysis of the Hutterities, the Amish, and other selected Caucasian populations. Am J Hum Genet 1980;32(2):246–257. PMID: 7386460.
  139. Baumgartner ER, Suormala T. Multiple carboxylase deficiency: Inherited and acquired disorders of biotin metabolism. Int J Vitam Nutr Res 1997;67(5):377–384. PMID: 9350481.
  140. Tammachote R, Janklat S, Tongkobpetch S, et al. Holocarboxylase synthetase deficiency: novel clinical and molecular findings. Clin Genet 2010;78(1):88–93. DOI: 10.1111/j.1399-0004.2009.01357.x.
  141. Zempleni J, Liu D, Camara DT, et al. Novel roles of holocarboxylase synthetase in gene regulation and intermediary metabolism. Nutr Rev 2014;72(6):369–376. DOI: 10.1111/nure.12103.
  142. Tong L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2013;70(5):863–891. DOI: 10.1007/s00018-012-1096-0.
  143. Pestinger V, Wijeratne SS, Rodriguez-Melendez R, et al. Novel histone biotinylation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes. J Nutr Biochem 2011;22(4):328–333. DOI: 10.1016/j.jnutbio.2010.02.011.
  144. Solorzano-Vargas RS, Pacheco-Alvarez D, Leon-Del-Rio A. Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc Natl Acad Sci USA 2002;99(8):5325–5330. DOI: 10.1073/pnas.082097699.
  145. Xia M, Malkaram SA, Zempleni J. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene. J Nutr Biochem 2013;24(11):1963–1969. DOI: 10.1016/j.jnutbio.2013.06.007.
  146. Bao B, Pestinger V, Hassan YI, et al. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. J Nutr Biochem 2011;22(5):470–475. DOI: 10.1016/j.jnutbio.2010.04.001.
  147. Li Y, Hassan YI, Moriyama H, et al. Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events. J Nutr Biochem 2013;24(8):1446–1452. DOI: 10.1016/j.jnutbio.2012.12.003.
  148. Zempleni J, Hassan YI, Wijeratne SS. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab 2008;3(6):715–724. DOI: 10.1586/17446651.3.6.715.
  149. Hymes J, Fleischhauer K, Wolf B. Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med 1995;56(1):76–83. DOI: 10.1006/bmme.1995.1059.
  150. Hart PS, Hymes J, Wolf B. Isoforms of human serum biotinidase. Clin Chim Acta 1991;197(3):257–264. DOI: 10.1016/0009-8981(91)90146-4.
  151. Wolf B. Clinical issues and frequent questions about biotinidase deficiency. Mol Genet Metab 2010;100(1):6–13. DOI: 10.1016/j.ymgme.2010.01.003.
  152. Cowan TM, Kazerouni NN, Dharajiya N, et al. Increased incidence of profound biotinidase deficiency among Hispanic newborns in California. Mol Genet Metab 2012;106(4):485–487. DOI: 10.1016/j.ymgme.2012.05.017.
  153. Wolf B. Biotinidase Deficiency. 2023. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1322/.
  154. Hymes J, Stanley CM, Wolf B. Mutations in BTD causing biotinidase deficiency. Hum Mutat 2001;18(5):375–381. DOI: 10.1002/humu.1208.
  155. Pindolia K, Jordan M, Wolf B. Analysis of mutations causing biotinidase deficiency. Hum Mutat 2010;31(9):983–991. DOI: 10.1002/humu.21303.
  156. Sivri HS, Genc GA, Tokatli A, et al. Hearing loss in biotinidase deficiency: genotype-phenotype correlation. J Pediatr 2007;150(4):439–442. DOI: 10.1016/j.jpeds.2007.01.036.
  157. Jezela-Stanek A, Suchon L, Sobczynska-Tomaszewska A, et al. Molecular Background and Disease Prevalence of Biotinidase Deficiency in a Polish Population-Data Based on the National Newborn Screening Programme. Genes (Basel) 2022;13(5). DOI: 10.3390/genes13050802.
  158. Strovel ET, Cowan TM, Scott AI, et al. Laboratory diagnosis of biotinidase deficiency, 2017 update: A technical standard and guideline of the American College of Medical Genetics and Genomics. Genet Med 2017;19(10). DOI: 10.1038/gim.2017.84.
  159. Bhardwaj P, Kaushal RK, Chandel A. Biotinidase deficiency: A treatable cause of infantile seizures. J Pediatr Neurosci 2010;5(1):82–83. DOI: 10.4103/1817-1745.66660.
  160. Saleem H, Simpson B. Biotinidase Deficiency. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
  161. Pomponio RJ, Hymes J, Pandya A, et al. Prenatal diagnosis of heterozygosity for biotinidase deficiency by enzymatic and molecular analyses. Prenat Diagn 1998;18(2):117–122. PMID: 9516011.
  162. Lin Y, Wang W, Lin C, et al. Biochemical and molecular features of Chinese patients with glutaric acidemia type 1 detected through newborn screening. Orphanet J Rare Dis 2021;16(1):339. DOI: 10.1186/s13023-021-01964-5.
  163. Strauss KA, Williams KB, Carson VJ, et al. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab 2020;131(3):325–340. DOI: 10.1016/j.ymgme.2020.09.007.
  164. Vester ME, Bilo RA, Karst WA, et al. Subdural hematomas: Glutaric aciduria type 1 or abusive head trauma? A systematic review. Forensic Sci Med Pathol 2015;11(3):405–415. DOI: 10.1007/s12024-015-9698-0.
  165. Larson A, Goodman S. Glutaric Acidemia Type 1. 2022. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle.
  166. Sen A, Pillay RS. Striatal necrosis in type 1 glutaric aciduria: Different stages in two siblings. J Pediatr Neurosci 2011;6(2):146–148. DOI: 10.4103/1817-1745.92845.
  167. Pinto PL, Camara B, Florindo C, et al. Glutaric Acidemia Type 1: Diagnosis, Clinical features, and Outcome in a Portuguese Cohort. Endocr Metab Immune Disord Drug Targets 2023. DOI: 10.2174/1871530323666230914122946.
  168. Boy N, Muhlhausen C, Maier EM, et al. Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: Third revision. J Inherit Metab Dis 2023;46(3):482–519. DOI: 10.1002/jimd.12566.
  169. Li Q, Yang C, Feng L, et al. Glutaric Acidemia, Pathogenesis and Nutritional Therapy. Front Nutr 2021;8:7
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.