Register      Login

VOLUME 2 , ISSUE 1 ( January-March, 2023 ) > List of Articles


Innate Immune Memory in Macrophages

Keywords : Chromatin, Development, Fetus, Fumarate, Lipoprotein(a), MMP-2, MMP-9, Neonate, Newborn, Succinic acid, α-ketoglutaric acid

Citation Information : Innate Immune Memory in Macrophages. 2023; 2 (1):60-79.

DOI: 10.5005/jp-journals-11002-0058

License: CC BY-NC 4.0

Published Online: 07-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Macrophages have been recognized as the primary mediators of innate immunity starting from embryonic/fetal development. Macrophage-mediated defenses may not be as antigen-specific as adaptive immunity, but increasing information suggests that these responses do strengthen with repeated immunological triggers. The concept of innate memory in macrophages has been described as “trained immunity” or “innate immune memory (IIM).” As currently understood, this cellular memory is rooted in epigenetic and metabolic reprogramming. The recognition of IIM may be particularly important in the fetus and the young neonate who are yet to develop protective levels of adaptive immunity, and could even be of preventive/therapeutic importance in many disorders. There may also be a possibility of therapeutic enhancement with targeted vaccination. This article presents a review of the properties, mechanisms, and possible clinical significance of macrophage-mediated IIM.

  1. Mezu-Ndubuisi OJ, Maheshwari A. Role of macrophages in fetal development and perinatal disorders. Pediatr Res 2021;90(3):513–523. DOI: 10.1038/s41390-020-01209-4.
  2. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity 2014;41(1):21–35. DOI: 10.1016/j.immuni.2014.06.013.
  3. Saeed S, Quintin J, Kerstens HH, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014;345(6204):1251086. DOI: 10.1126/science.1251086.
  4. Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 2015;4:296–307. DOI: 10.1016/j.redox.2015.01.008.
  5. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci 2017;19(1):92. DOI: 10.3390/ijms19010092.
  6. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 2015;264(1):182–203. DOI: 10.1111/imr.12266.
  7. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2018;14(Suppl 2):49. DOI: 10.1186/s13223-018-0278-1.
  8. Jang H-J, Lee H-S, Yu W, et al. Therapeutic targeting of macrophage plasticity remodels the tumor-immune microenvironment. Cancer Res 2022;82(14):2593–2609. DOI: 10.1158/0008-5472.CAN-21-3506.
  9. Maheshwari A. The phylogeny, ontogeny, and organ-specific differentiation of macrophages in the developing intestine. Newborn (Clarksville) 2022;1(4):340–355. DOI: 10.5005/jp-journals-11002-0044.
  10. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014;5:491. DOI: 10.3389/fimmu.2014.00491.
  11. Diamond G, Beckloff N, Weinberg A, et al. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009;15(21):2377–2392. DOI: 10.2174/138161209788682325.
  12. Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: A macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA 2004;101(8):2422–2427. DOI: 10.1073/pnas.0304455101.
  13. Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol 2016;6:194. DOI: 10.3389/fcimb.2016.00194.
  14. Maheshwari A, Kelly DR, Nicola T, et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 2011;140(1):242–253. DOI: 10.1053/j.gastro.2010.09.043.
  15. MohanKumar K, Kaza N, Jagadeeswaran R, et al. Gut mucosal injury in neonates is marked by macrophage infiltration in contrast to pleomorphic infiltrates in adult: Evidence from an animal model. Am J Physiol Gastrointest Liver Physiol 2012;303(1):G93–G102. DOI: 10.1152/ajpgi.00016.2012.
  16. Murray RZ, Stow JL. Cytokine secretion in macrophages: SNAREs, Rabs, and membrane trafficking. Front Immunol 2014;5:538. DOI: 10.3389/fimmu.2014.00538.
  17. Lacy P, Stow JL. Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways. Blood 2011;118(1):9–18. DOI: 10.1182/blood-2010-08-265892.
  18. Gaudino SJ, Kumar P. Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front Immunol 2019;10:360. DOI: 10.3389/fimmu.2019.00360.
  19. Muntjewerff EM, Meesters LD, van den Bogaart G. Antigen cross-presentation by macrophages. Front Immunol 2020;11:1276. DOI: 10.3389/fimmu.2020.01276.
  20. Lendeckel U, Venz S, Wolke C. Macrophages: Shapes and functions. ChemTexts 2022;8(2):12. DOI: 10.1007/s40828-022-00163-4.
  21. Italiani P, Boraschi D. New insights into tissue macrophages: From their origin to the development of memory. Immune Netw 2015;15(4): 167–176. DOI: 10.4110/in.2015.15.4.167.
  22. Chu Z, Feng C, Sun C, et al. Primed macrophages gain long-term specific memory to reject allogeneic tissues in mice. Cell Mol Immunol 2021;18(4):1079–1081. DOI: 10.1038/s41423-020-00521-7.
  23. Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020;20(6):375–388. DOI: 10.1038/s41577-020-0285-6.
  24. Drummer 4th C, Saaoud F, Shao Y, et al. Trained immunity and reactivity of macrophages and endothelial cells. Arterioscler Thromb Vasc Biol 2021;41(3):1032–1046. DOI: 10.1161/ATVBAHA.120.315452.
  25. Riksen NP, Netea MG. Immunometabolic control of trained immunity. Mol Aspects Med 2021;77:100897. DOI: 10.1016/j.mam. 2020.100897.
  26. Boraschi D, Italiani P. Innate immune memory: Time for adopting a correct terminology. Front Immunol 2018;9:799. DOI: 10.3389/fimmu.2018.00799.
  27. Abou-Daya KI, Oberbarnscheidt MH. Innate allorecognition in transplantation. J Heart Lung Transplant 2021;40(7):557–561. DOI: 10.1016/j.healun.2021.03.018.
  28. Van Belleghem JD, Bollyky PL. Macrophages and innate immune memory against Staphylococcus skin infections. Proc Natl Acad Sci USA 2018;115(47):11865–11867. DOI: 10.1073/pnas.1816935115.
  29. Gardiner CM, Mills KH. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases. Semin Immunol 2016;28(4):343–350. DOI: 10.1016/j.smim.2016.03.001.
  30. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science 2016;352(6284):aaf1098. DOI: 10.1126/science.aaf1098.
  31. Netea MG, Schlitzer A, Placek K, et al. Innate and adaptive immune memory: An evolutionary continuum in the host's response to pathogens. Cell Host Microbe 2019;25(1):13–26. DOI: 10.1016/j.chom.2018.12.006.
  32. Cheng S-C, Scicluna BP, Arts RJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 2016;17(4):406–413. DOI: 10.1038/ni.3398.
  33. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol 2008;214(2):161–178. DOI: 10.1002/path.2284.
  34. Arora S, Dev K, Agarwal B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2018;223 (4–5):383–396. DOI: 10.1016/j.imbio.2017.11.001.
  35. Kloc M, Kubiak JZ, Zdanowski R, et al. Memory macrophages. Int J Mol Sci 2023;24(1):38. DOI: 10.3390/ijms24010038.
  36. Brueggeman JM, Zhao J, Schank M, et al. Trained immunity: An overview and the impact on COVID-19. Front Immunol 2022;13:837524. DOI: 10.3389/fimmu.2022.837524.
  37. Collier F, Chau C, Mansell T, et al. Innate immune activation and circulating inflammatory markers in preschool children. Front Immunol 2022;12:830049. DOI: 10.3389/fimmu.2021.830049.
  38. Sharrock J, Sun JC. Innate immunological memory: From plants to animals. Curr Opin Immunol 2020;62:69–78. DOI: 10.1016/j.coi.2019.12.001.
  39. Melillo D, Marino R, Italiani P, et al. Innate immune memory in invertebrate metazoans: A critical appraisal. Front Immunol 2018;9:1915. DOI: 10.3389/fimmu.2018.01915.
  40. Conrath U. Systemic acquired resistance. Plant Signal Behav 2006;1(4):179–184. DOI: 10.4161/psb.1.4.3221.
  41. Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol 2004;42:185–209. DOI: 10.1146/annurev.phyto.42.040803.140421.
  42. Tetreau G, Dhinaut J, Gourbal B, et al. Trans-generational immune priming in invertebrates: Current knowledge and future prospects. Front Immunol 2019;10:1938. DOI: 10.3389/fimmu.2019.01938.
  43. Nelson VR, Nadeau JH. Transgenerational genetic effects. Epigenomics 2010;2(6):797–806. DOI: 10.2217/epi.10.57.
  44. Brillantes M, Beaulieu AM. Memory and memory-like NK cell responses to microbial pathogens. Front Cell Infect Microbiol 2020;10:102. DOI: 10.3389/fcimb.2020.00102.
  45. Sun JC, Lopez-Verges S, Kim CC, et al. NK cells and immune “memory”. J Immunol 2011;186(4):1891–1897. DOI: 10.4049/jimmunol.1003035.
  46. Nairne JS, Pandeirada JN. Adaptive memory: The evolutionary significance of survival processing. Perspect Psychol Sci 2016;11(4):496–511. DOI: 10.1177/1745691616635613.
  47. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: Genetic events and selective pressures. Nat Rev Genet 2010;11(1):47–59. DOI: 10.1038/nrg2703.
  48. Semmes EC, Chen J-L, Goswami R, et al. Understanding early-life adaptive immunity to guide interventions for pediatric health. Front Immunol 2021;11:595297. DOI: 10.3389/fimmu.2020.595297.
  49. Bramer WM, Rethlefsen ML, Kleijnen J, et al. Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Syst Rev 2017;6(1):245. DOI: 10.1186/s13643-017-0644-y.
  50. Richter RR, Austin TM. Using MeSH (medical subject headings) to enhance PubMed search strategies for evidence-based practice in physical therapy. Phys Ther 2012;92(1):124–132. DOI: 10.2522/ptj.20100178.
  51. Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol 2015;6:486. DOI: 10.3389/fimmu.2015.00486.
  52. Bistoni F, Vecchiarelli A, Cenci E, et al. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun 1986;51(2):668–674. DOI: 10.1128/iai.51.2.668-674.1986.
  53. Stremmel C, Schuchert R, Wagner F, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun 2018;9(1):75. DOI: 10.1038/s41467-017-02492-2.
  54. Banaei-Bouchareb L, Peuchmaur M, Czernichow P, et al. A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. J Endocrinol 2006;188(3):467–480. DOI: 10.1677/joe.1.06225.
  55. Kasaai B, Caolo V, Peacock HM, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep 2017;7:43817. DOI: 10.1038/srep43817.
  56. Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330(6005):841–845. DOI: 10.1126/science.1194637.
  57. Mariani SA, Li Z, Rice S, et al. Pro-inflammatory aorta-associated macrophages are involved in embryonic development of hematopoietic stem cells. Immunity 2019;50(6):1439–1452.e5. DOI: 10.1016/j.immuni.2019.05.003.
  58. Sinka L, Biasch K, Khazaal I, et al. Angiotensin-converting enzyme (CD143) specifies emerging lympho-hematopoietic progenitors in the human embryo. Blood 2012;119(16):3712–3723. DOI: 10.1182/blood-2010-11-314781.
  59. McGrath KE, Frame JM, Fegan KH, et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 2015;11(12):1892–1904. DOI: 10.1016/j.celrep.2015.05.036.
  60. Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015;518(7540):547–551. DOI: 10.1038/nature13989.
  61. Kelemen E, Jánossa M. Macrophages are the first differentiated blood cells formed in human embryonic liver. Exp Hematol 1980;8(8): 996–1000. PMID: 7202591.
  62. Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol 2016;17(1):2–8. DOI: 10.1038/ni.3341.
  63. de la Paz Sánchez-Martínez M, Blanco-Favela F, Mora-Ruiz MD, et al. IL-17-differentiated macrophages secrete pro-inflammatory cytokines in response to oxidized low-density lipoprotein. Lipids Health Dis 2017;16(1):196. DOI: 10.1186/s12944-017-0588-1.
  64. Jeljeli M, Riccio LGC, Chouzenoux S, et al. Macrophage immune memory controls endometriosis in mice and humans. Cell Rep 2020;33(5):108325. DOI: 10.1016/j.celrep.2020.108325.
  65. Arts RJ, Joosten LA, Netea MG. Immunometabolic circuits in trained immunity. Semin Immunol 2016;28(5):425–430. DOI: 10.1016/j.smim.2016.09.002.
  66. Arts RJ, Novakovic B, Ter Horst R, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 2016;24(6):807–819. DOI: 10.1016/j.cmet.2016.10.008.
  67. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021;6(1):291. DOI: 10.1038/s41392-021-00687-0.
  68. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22(2):240–273, Table of Contents. DOI: 10.1128/CMR.00046-08.
  69. Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 2018;8(1). DOI: 10.1128/ecosalplus.ESP-0001-2018.
  70. Vergalli J, Bodrenko IV, Masi M, et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Microbiol 2020;18(3):164–176. DOI: 10.1038/s41579-019-0294-2.
  71. Kim SJ, Chang J, Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta 2015;1848(1 Pt B):350–362. DOI: 10.1016/j.bbamem.2014.05.031.
  72. Hajam IA, Dar PA, Shahnawaz I, et al. Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 2017;49(9):e373. DOI: 10.1038/emm.2017.172.
  73. Burnham-Marusich AR, Hubbard B, Kvam AJ, et al. Conservation of mannan synthesis in fungi of the zygomycota and ascomycota reveals a broad diagnostic target. mSphere 2018;3(3):e00094-18. DOI: 10.1128/mSphere.00094-18.
  74. Camilli G, Tabouret G, Quintin J. The complexity of fungal β-glucan in health and disease: Effects on the mononuclear phagocyte system. Front Immunol 2018;9:673. DOI: 10.3389/fimmu.2018.00673.
  75. Yoneyama M, Fujita T. Recognition of viral nucleic acids in innate immunity. Rev Med Virol 2010;20(1):4–22. DOI: 10.1002/rmv.633.
  76. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016;16(9):566–580. DOI: 10.1038/nri.2016.78.
  77. Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw 2018;18(4):e27. DOI: 10.4110/in.2018.18.e27.
  78. Wu C, Xu Y, Zhao Y. Two kinds of macrophage memory: Innate and adaptive immune-like macrophage memory. Cell Mol Immunol 2022;19(7):852–854. DOI: 10.1038/s41423-022-00885-y.
  79. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449(7164):819–826. DOI: 10.1038/nature06246.
  80. Sherwood ER, Burelbach KR, McBride MA, et al. Innate immune memory and the host response to infection. J Immunol 2022;208(4):785–792. DOI: 10.4049/jimmunol.2101058.
  81. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011;331(6013):44–49. DOI: 10.1126/science.1198687.
  82. Wang X, Peng H, Tian Z. Innate lymphoid cell memory. Cell Mol Immunol 2019;16(5):423–429. DOI: 10.1038/s41423-019-0212-6.
  83. Ratajczak W, Niedźwiedzka-Rystwej P, Tokarz-Deptula B, et al. Immunological memory cells. Cent Eur J Immunol 2018;43(2):194–203. DOI: 10.5114/ceji.2018.77390.
  84. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010;125(2 Suppl 2):S3–S23. DOI: 10.1016/j.jaci.2009.12.980.
  85. Rahman A, Tiwari A, Narula J, et al. Importance of feedback and feedforward loops to adaptive immune response modeling. CPT Pharmacometrics Syst Pharmacol 2018;7(10):621–628. DOI: 10.1002/psp4.12352.
  86. Warrington R, Watson W, Kim HL, et al. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2011;7 Suppl 1(Suppl 1):S1. DOI: 10.1186/1710-1492-7-S1-S1.
  87. Janeway Jr CA, Travers P, Walport M, et al. Immunological memory. In: Janeway Jr CA, Travers P, Walport M, Shlomchik MJ (eds). Immunobiology: The Immune System in Health and Disease, 5th ed., Garland Science; 2001.
  88. Ito T, Connett JM, Kunkel SL, et al. The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 2013;4:10. DOI: 10.3389/fimmu.2013.00010.
  89. Theobald SJ, Simonis A, Georgomanolis T, et al. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Mol Med 2021;13(8):e14150. DOI: 10.15252/emmm.202114150.
  90. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11(11):723–737. DOI: 10.1038/nri3073.
  91. Palm AE, Henry C. Remembrance of things past: Long-term B cell memory after infection and vaccination. Front Immunol 2019;10:1787. DOI: 10.3389/fimmu.2019.01787.
  92. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn's disease. Mucosal Immunol 2011;4(5):484–495. DOI: 10.1038/mi.2011.29.
  93. Franchi L, Warner N, Viani K, et al. Function of nod-like receptors in microbial recognition and host defense. Immunol Rev 2009;227(1):106–128. DOI: 10.1111/j.1600-065X.2008.00734.x.
  94. Motta V, Soares F, Sun T, et al. NOD-like receptors: Versatile cytosolic sentinels. Physiol Rev 2015;95(1):149–178. DOI: 10.1152/physrev.00009.2014.
  95. Jacobs SR, Damania B. NLRs, inflammasomes, and viral infection. J Leukoc Biol 2012;92(3):469–477. DOI: 10.1189/jlb.0312132.
  96. Kanneganti T-D. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 2010;10(10):688–698. DOI: 10.1038/nri2851.
  97. Boller T, Felix G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009;60:379–406. DOI: 10.1146/annurev.arplant.57.032905.105346.
  98. Irazoki O, Hernandez SB, Cava F. Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front Microbiol 2019;10:500. DOI: 10.3389/fmicb.2019.00500.
  99. Tian D, Han M. Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists. Dev Cell 2022;57(3):361–372.e5. DOI: 10.1016/j.devcel.2021.12.016.
  100. Guo H, Callaway JB, Ting JP. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med 2015;21(7):677–687. DOI: 10.1038/nm.3893.
  101. de Vasconcelos NM, Lamkanfi M. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb Perspect Biol 2020;12(5):a036392. DOI: 10.1101/cshperspect.a036392.
  102. Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 2006;108(9):3168–3175. DOI: 10.1182/blood-2006-05-024406.
  103. Lennartz MR, Cole FS, Shepherd VL, et al. Isolation and characterization of a mannose-specific endocytosis receptor from human placenta. J Biol Chem 1987;262(21):9942–9944. PMID: 3611070.
  104. Schorey JS, Lawrence C. The pattern recognition receptor Dectin-1: From fungi to mycobacteria. Curr Drug Targets 2008;9(2):123–129. DOI: 10.2174/138945008783502430.
  105. Lu J, Sun PD. The structure of the TLR5-flagellin complex: A new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal 2012;5(223):pe11. PMID: 22720339.
  106. Han B, Baruah K, Cox E, et al. Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: A mini-review. Front Immunol 2020;11:658. DOI: 10.3389/fimmu.2020.00658.
  107. Al Nabhani Z, Dietrich G, Hugot J-P, et al. Nod2: The intestinal gate keeper. PLoS Pathog 2017;13(3):e1006177. DOI: 10.1371/journal.ppat.1006177.
  108. Ogawa C, Liu Y-J, Kobayashi KS. Muramyl dipeptide and its derivatives: Peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 2011;7(3):180–197. DOI: 10.2174/157340711796817913.
  109. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007;447(7147):972–978. DOI: 10.1038/nature05836.
  110. Seeley JJ, Ghosh S. Tolerization of inflammatory gene expression. Cold Spring Harb Symp Quant Biol 2013;78:69–79. DOI: 10.1101/sqb.2013.78.020040.
  111. Mages J, Dietrich H, Lang R. A genome-wide analysis of LPS tolerance in macrophages. Immunobiology 2007;212(9–10):723–737. DOI: 10.1016/j.imbio.2007.09.015.
  112. MohanKumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun 2019;10(1):3494. DOI: 10.1038/s41467-019-11199-5.
  113. MohanKumar K, Namachivayam K, Chapalamadugu KC, et al. Smad7 interrupts TGF-β signaling in intestinal macrophages and promotes inflammatory activation of these cells during necrotizing enterocolitis. Pediatr Res 2016;79(6):951–961. DOI: 10.1038/pr.2016.18.
  114. MohanKumar K, Namachivayam K, Cheng F, et al. Trinitrobenzene sulfonic acid-induced intestinal injury in neonatal mice activates transcriptional networks similar to those seen in human necrotizing enterocolitis. Pediatr Res 2017;81(1-1):99–112. DOI: 10.1038/pr.2016.189.
  115. Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 2018;19(6):1801. DOI: 10.3390/ijms19061801.
  116. Rogers H, Williams DW, Feng G-J, et al. Role of bacterial lipopolysaccharide in enhancing host immune response to Candida albicans. Clin Dev Immunol 2013;2013:320168. DOI: 10.1155/2013/320168.
  117. Leonhardt J, Große S, Marx C, et al. Candida albicans β-glucan differentiates human monocytes into a specific subset of macrophages. Front Immunol 2018;9:2818. DOI: 10.3389/fimmu.2018.02818.
  118. Rusek P, Wala M, Druszczyńska M, et al. Infectious agents as stimuli of trained innate immunity. Int J Mol Sci 2018;19(2):456. DOI: 10.3390/ijms19020456.
  119. Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 2012;12(2):223–232. DOI: 10.1016/j.chom.2012.06.006.
  120. Covián C, Fernández-Fierro A, Retamal-Díaz A, et al. BCG-induced cross-protection and development of trained immunity: Implication for vaccine design. Front Immunol 2019;10:2806. DOI: 10.3389/fimmu.2019.02806.
  121. Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA 2012;109(43):17537–17542. DOI: 10.1073/pnas.1202870109.
  122. Gillen J, Ondee T, Gurusamy D, et al. LPS tolerance inhibits cellular respiration and induces global changes in the macrophage secretome. Biomolecules 2021;11(2):164. DOI: 10.3390/biom11020164.
  123. Chen S, Yang J, Wei Y, et al. Epigenetic regulation of macrophages: From homeostasis maintenance to host defense. Cell Mol Immunol 2020;17(1):36–49. DOI: 10.1038/s41423-019-0315-0.
  124. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat Rev Immunol 2013;13(12):862–874. DOI: 10.1038/nri3552.
  125. Xing Z, Afkhami S, Bavananthasivam J, et al. Innate immune memory of tissue-resident macrophages and trained innate immunity: Re-vamping vaccine concept and strategies. J Leukoc Biol 2020;108(3):825–834. DOI: 10.1002/JLB.4MR0220-446R.
  126. Didierlaurent A, Goulding J, Patel S, et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 2008;205(2):323–329. DOI: 10.1084/jem.20070891.
  127. van der Sluijs KF, Nijhuis M, Levels JH, et al. Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J Infect Dis 2006;193(2):214–222. DOI: 10.1086/498911.
  128. Shahangian A, Chow EK, Tian X, et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 2009;119(7):1910–1920. DOI: 10.1172/JCI35412.
  129. Novakovic B, Habibi E, Wang S-Y, et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 2016;167(5):1354–1368.e14. DOI: 10.1016/j.cell.2016.09.034.
  130. Schneider D, Tate AT. Innate immune memory: Activation of macrophage killing ability by developmental duties. Curr Biol 2016;26(12):R503–R505. DOI: 10.1016/j.cub.2016.05.016.
  131. Weavers H, Evans IR, Martin P, et al. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 2016;165(7):1658–1671. DOI: 10.1016/j.cell.2016.04.049.
  132. Guilliams M, Svedberg FR. Does tissue imprinting restrict macrophage plasticity? Nat Immunol 2021;22(2):118–127. DOI: 10.1038/s41590-020-00849-2.
  133. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010;327(5962):167–170. DOI: 10.1126/science.1179555.
  134. Lacal I, Ventura R. Epigenetic inheritance: Concepts, mechanisms and perspectives. Front Mol Neurosci 2018;11:292. DOI: 10.3389/fnmol.2018.00292.
  135. Fraser R, Lin C-J. Epigenetic reprogramming of the zygote in mice and men: On your marks, get set, go! Reproduction 2016;152(6): R211–R222. DOI: 10.1530/REP-16-0376.
  136. Sun Y-C, Wang Y-Y, Ge W, et al. Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget 2017;8(34):57836–57844. DOI: 10.18632/oncotarget.18444.
  137. Jarred EG, Bildsoe H, Western PS. Out of sight, out of mind? Germ cells and the potential impacts of epigenomic drugs. F1000Res 2018;7:F1000 Faculty Rev-1967. DOI: 10.12688/f1000research.15935.1.
  138. Bain CC, Schridde A. Origin, differentiation, and function of intestinal macrophages. Front Immunol 2018;9:2733. DOI: 10.3389/fimmu.2018.02733.
  139. Teh YC, Ding JL, Ng LG, et al. Capturing the fantastic voyage of monocytes through time and space. Front Immunol 2019;10:834. DOI: 10.3389/fimmu.2019.00834.
  140. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol 2014;5:514. DOI: 10.3389/fimmu.2014.00514.
  141. Hoeksema MA, de Winther MP. Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal 2016;25(14): 758–774. DOI: 10.1089/ars.2016.6695.
  142. Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity 2018;49(4):595–613. DOI: 10.1016/j.immuni.2018.10.005.
  143. Zecher D, van Rooijen N, Rothstein DM, et al. An innate response to allogeneic nonself mediated by monocytes. J Immunol 2009;183(12):7810–7816. DOI: 10.4049/jimmunol.0902194.
  144. Das A, Sinha M, Datta S, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 2015;185(10):2596–2606. DOI: 10.1016/j.ajpath.2015.06.001.
  145. Stubbington MJT, Rozenblatt-Rosen O, Regev A, et al. Single-cell transcriptomics to explore the immune system in health and disease. Science 2017;358(6359):58–63. DOI: 10.1126/science.aan6828.
  146. Blériot C, Chakarov S, Ginhoux F. Determinants of resident tissue macrophage identity and function. Immunity 2020;52(6):957–970. DOI: 10.1016/j.immuni.2020.05.014.
  147. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity 2010;105(1):4–13. DOI: 10.1038/hdy.2010.54.
  148. Tsompana M, Buck MJ. Chromatin accessibility: A window into the genome. Epigenetics Chromatin 2014;7(1):33. DOI: 10.1186/1756-8935-7-33.
  149. Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem 2013;61:289–317. DOI: 10.1007/978-94-007-4525-4_13.
  150. Fanucchi S, Domínguez-Andrés J, Joosten LAB, et al. The intersection of epigenetics and metabolism in trained immunity. Immunity 2021;54(1):32–43. DOI: 10.1016/j.immuni.2020.10.011.
  151. Fanucchi S, Fok ET, Dalla E, et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet 2019;51(1):138–150. DOI: 10.1038/s41588-018-0298-2.
  152. Tachiwana H, Yamamoto T, Saitoh N. Gene regulation by non-coding RNAs in the 3D genome architecture. Curr Opin Genet Dev 2020;61:69–74. DOI: 10.1016/j.gde.2020.03.002.
  153. Sun S, Barreiro LB. The epigenetically-encoded memory of the innate immune system. Curr Opin Immunol 2020;65:7–13. DOI: 10.1016/j.coi.2020.02.002.
  154. van der Heijden C, Noz MP, Joosten LAB, et al. Epigenetics and trained immunity. Antioxid Redox Signal 2018;29(11):1023–1040. DOI: 10.1089/ars.2017.7310.
  155. Zubair K, You C, Kwon G, et al. Two faces of macrophages: Training and tolerance. Biomedicines 2021;9(11):1596. DOI: 10.3390/biomedicines9111596.
  156. Das C, Tyler JK. Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta 2013;1819(3-4): 332–342. DOI: 10.1016/j.bbagrm.2011.08.001.
  157. Logie C, Stunnenberg HG. Epigenetic memory: A macrophage perspective. Semin Immunol 2016;28(4):359–367. DOI: 10.1016/j.smim.2016.06.003.
  158. Schmidt SV, Krebs W, Ulas T, et al. The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin. Cell Res 2016;26(2):151–170. DOI: 10.1038/cr.2016.1.
  159. Lavin Y, Winter D, Blecher-Gonen R, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014;159(6):1312–1326. DOI: 10.1016/j.cell.2014.11.018.
  160. Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 2020;21(2):71–87. DOI: 10.1038/s41576-019-0173-8.
  161. Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 2009;28(13):1878–1889. DOI: 10.1038/emboj.2009.119.
  162. Rodriguez Y, Hinz JM, Laughery MF, et al. Site-specific acetylation of histone H3 decreases polymerase β activity on nucleosome core particles in vitro. J Biol Chem 2016;291(21):11434–11445. DOI: 10.1074/jbc.M116.725788.
  163. Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 2013;20(1):14–22. DOI: 10.1038/nsmb.2461.
  164. Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest 2019;129(8):2994–3005. DOI: 10.1172/JCI124619.
  165. Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells. Cell 2013;152(1-2):157–171. DOI: 10.1016/j.cell.2012.12.018.
  166. Scott WA, Campos EI. Interactions with histone H3 & tools to study them. Front Cell Dev Biol 2020;8:701. DOI: 10.3389/fcell.2020.00701.
  167. Cruz C, Rosa MD, Krueger C, et al. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. Elife 2018;7:e34081. DOI: 10.7554/eLife.34081.
  168. Ye N, Ding Y, Wild C, et al. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014;57(16):6930–6948. DOI: 10.1021/jm5004733.
  169. Loh C-Y, Arya A, Naema AF, et al. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: Functions and therapeutic implication. Front Oncol 2019;9:48. DOI: 10.3389/fonc.2019.00048.
  170. Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998;12(15): 2403–2412. DOI: 10.1101/gad.12.15.2403.
  171. Liu T, Zhang L, Joo D, et al. NF-kappaB signaling in inflammation. Sig Transduct Target Ther 2017;2:17023. DOI: 10.1038/sigtrans.2017.23.
  172. Lin Y, Qiu T, Wei G, et al. Role of histone post-translational modifications in inflammatory diseases. Front Immunol 2022;13:852272. DOI: 10.3389/fimmu.2022.852272.
  173. Jarmasz JS, Stirton H, Davie JR, et al. DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clin Epigenetics 2019;11(1):5. DOI: 10.1186/s13148-018-0596-7
  174. Suárez-Álvarez B, Baragaño Raneros A, Ortega F, et al. Epigenetic modulation of the immune function: A potential target for tolerance. Epigenetics 2013;8(7):694–702. DOI: 10.4161/epi.25201.
  175. Pan M-R, Hsu M-C, Chen L-T, et al. Orchestration of H3K27 methylation: Mechanisms and therapeutic implication. Cell Mol Life Sci 2018;75(2):209–223. DOI: 10.1007/s00018-017-2596-8.
  176. Wiles ET, Selker EU. H3K27 methylation: A promiscuous repressive chromatin mark. Curr Opin Genet Dev 2017;43:31–37. DOI: 10.1016/j.gde.2016.11.001.
  177. Zhao W, Xu Y, Wang Y, et al. Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci Rep 2021;11(1):15912. DOI: 10.1038/s41598-021-95398-5.
  178. Gao Y, Chen L, Han Y, et al. Acetylation of histone H3K27 signals the transcriptional elongation for estrogen receptor alpha. Commun Biol 2020;3(1):165. DOI: 10.1038/s42003-020-0898-0.
  179. Golbabapour S, Majid NA, Hassandarvish P, et al. Gene silencing and polycomb group proteins: An overview of their structure, mechanisms and phylogenetics. OMICS 2013;17(6):283–296. DOI: 10.1089/omi.2012.0105.
  180. Grossniklaus U, Paro R. Transcriptional silencing by polycomb-group proteins. Cold Spring Harb Perspect Biol 2014;6(11):a019331. DOI: 10.1101/cshperspect.a019331.
  181. Lavarone E, Barbieri CM, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun 2019;10(1):1679. DOI: 10.1038/s41467-019-09624-w.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.