Register      Login

VOLUME 1 , ISSUE 2 ( April-June, 2022 ) > List of Articles


Approach to Neonatal Alloimmune Thrombocytopenia: The Perspective from a Transfusion Medicine Service

Greeshma Sharma, Ratti Ram Sharma

Keywords : Alloantibdies, Alloantigens, Antigens capture elisa glycoproteins, Newborn, Platelet genotyping, Platelet specific antigens

Citation Information : Sharma G, Sharma RR. Approach to Neonatal Alloimmune Thrombocytopenia: The Perspective from a Transfusion Medicine Service. 2022; 1 (2):245-253.

DOI: 10.5005/jp-journals-11002-0031

License: CC BY-NC 4.0

Published Online: 05-07-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Neonatal alloimmune thrombocytopenia (NAIT) is an important hematological disorder in neonates. The pregnant mother's immune system gets sensitized to antigens expressed on fetal platelets that have been inherited from the father and begins producing specific alloantibodies against these antigens. Some of these antibodies get transported across the placenta into the baby and can damage/destroy platelets to cause fetal/neonatal thrombocytopenia. Many of these fetuses/infants develop major clinical complications such as intracranial hemorrhages. In this article, we describe normal platelet counts in neonates, the pathogenesis and epidemiology of NAIT, specific platelet antigens that have been identified as targets in NAIT, and the approach for laboratory diagnosis of NAIT. From the perspective of a transfusion medicine service, there are two targets as follows: (a) To identify the differences in the antigenic profiles of the platelets of the mother and her fetus/infant and (b) To detect alloantibodies in the maternal serum that may be specifically reactive to these platelet antigens. Early identification of NAIT can help timely institution of appropriate treatment. In this project, we reviewed the laboratory profiles of infants who were diagnosed to have NAIT at our own institution and also mined the literature in the databases EMBASE, PubMed, and Scopus.

  1. Donato H. Neonatal thrombocytopenia: A review. II. Non-immune thrombocytopenia; platelet transfusion. Arch Argent Pediatr Aug 2021;119(4):e303–e314. DOI: 10.5546/aap.2021.eng.e303.
  2. Caserta S, Zaccuri AM, Innao V, et al. Immune thrombocytopenia: options and new perspectives. Blood Coagul Fibrinolysis 2021;32(7):427–433. DOI: 10.1097/MBC.0000000000001058.
  3. Williamson LM. Screening programmes for foetomaternal alloimmune thrombocytopenia. Vox Sang 1998;74(Suppl. 2): 385–389. DOI: 10.1111/j.1423-0410.1998.tb05446.x.
  4. Roberts I, Murray NA. Neonatal thrombocytopenia: causes and management. Arch Dis Child Fetal Neonatal Ed 2003;88(5): F359–F364. DOI: 10.1136/fn.88.5.f359.
  5. Ulusoy E, Tufekci O, Duman N, et al. Thrombocytopenia in neonates: causes and outcomes. Ann Hematol 2013;92(7):961–967. DOI: 10.1007/s00277-013-1726-0.
  6. Stanworth SJ. Thrombocytopenia, bleeding, and use of platelet transfusions in sick neonates. Hematology Am Soc Hematol Educ Program 2012;2012:512–516. DOI: 10.1182/asheducation- 2012.1.512.
  7. Beiner ME, Simchen MJ, Sivan E, et al. Risk factors for neonatal thrombocytopenia in preterm infants. Am J Perinatol 2003;20(1): 49–54. DOI: 10.1055/s-2003-37948.
  8. Sola–Visner M, Saxonhouse MA, Brown RE. Neonatal thrombocytopenia: what we do and don't know. Early Hum Dev 2008;84(8):499–506. DOI: 10.1016/j.earlhumdev.2008.06.004.
  9. von Lindern JS, van den Bruele T, Lopriore E, et al. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr 2011;11:16. DOI: 10.1186/1471-2431-11-16.
  10. Fustolo-Gunnink SF, Fijnvandraat K, Putter H, et al. Dynamic prediction of bleeding risk in thrombocytopenic preterm neonates. Haematologica 2019;104(11):2300–2306. DOI: 10.3324/haematol. 2018.208595.
  11. Morrone K. Thrombocytopenia in the Newborn. Neoreviews 2018;19(1):e34–e41. DOI: 10.1542/NEO.19-1-E34.
  12. Reed MAB, Rikabi N, Krugh D, et al. Thrombocytopenia in a neonate. Lab Med 2003;34(12):833–835.
  13. Kasivajjula H, Maheshwari A. Pathophysiology and current management of necrotizing enterocolitis. Indian J Pediatr 2014;81(5):489–497. DOI: 10.1007/s12098-014-1388-5.
  14. Maheshwari A. Immunologic and hematological abnormalities in necrotizing enterocolitis. Clin Perinatol 2015;42(3):567–585. DOI: 10.1016/j.clp.2015.04.014.
  15. MohanKumar K, Namachivayam K, Cheng F, et al. Trinitrobenzene sulfonic acid-induced intestinal injury in neonatal mice activates transcriptional networks similar to those seen in human necrotizing enterocolitis. Pediatr Res 2016;81(1):99–112. DOI: 10.1038/pr.2016.189.
  16. MohanKumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun 2019; 10(1):3494. DOI: 10.1038/s41467-019-11199-5.
  17. Namachivayam K, MohanKumar K, Garg L, et al. Neonatal mice with necrotizing enterocolitis-like injury develop thrombocytopenia despite increased megakaryopoiesis. Pediatr Res 2017;81(5): 817–824. DOI: 10.1038/pr.2017.7.
  18. Kennedy J, Holt CL, Ricketts RR. The significance of portal vein gas in necrotizing enterocolitis. Am Surg 1987;53(4):231–234. PMID: 3579031.
  19. Kenton AB, Hegemier S, Smith EO, et al. Platelet transfusions in infants with necrotizing enterocolitis do not lower mortality but may increase morbidity. J Perinatol 2005;25(3):173–177. DOI: 10.1038/
  20. Khalak R, Chess PR. Fulminant necrotizing enterocolitis in a premature neonate treated for supraventricular tachycardia. J Perinatol 1998;18(4):306–307. PMID: 9730203.
  21. Kilic N, Buyukunal C, Dervisoglu S, et al. Maternal cocaine abuse resulting in necrotizing enterocolitis. An experimental study in a rat model. II. Results of perfusion studies. Pediatr Surg Int 2000;16(3): 176–178. DOI: 10.1007/s003830050717.
  22. Kim WY, Kim WS, Kim IO, et al. Sonographic evaluation of neonates with early-stage necrotizing enterocolitis. Pediatr Radiol 2005;35(11):1056–1061. DOI: 10.1007/s00247-005-1533-4.
  23. Baer VL, Lambert DK, Henry E, et al. Severe thrombocytopenia in the NICU. Pediatrics 2009;124(6):e1095–e1100. DOI: 10.1542/peds.2009-0582.
  24. Wiedmeier SE, Henry E, Sola–Visner MC, et al. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009;29(2): 130–136. DOI: 10.1038/jp.2008.141.
  25. Christensen RD, Henry E, Wiedmeier SE, et al. Thrombocytopenia among extremely low birth weight neonates: data from a multihospital healthcare system. J Perinatol 2006;26(6):348–53. DOI: 10.1038/
  26. Christensen RD, Baer VL, Henry E, et al. Thrombocytopenia in small-for-gestational-age infants. Pediatrics 2015;136(2):e361–e370. DOI: 10.1542/peds.2014-4182.
  27. Li X, Li Y, Lei M, et al. Congenital thrombocytopenia associated with GNE mutations in twin sisters: a case report and literature review. BMC Med Genet 2020;21(1):224. DOI: 10.1186/s12881-020-01163-2.
  28. Sillers L, Van Slambrouck C, Lapping–Carr G. Neonatal thrombocytopenia: etiology and diagnosis. Pediatr Ann 2015;44(7):e175–e180. DOI: 10.3928/00904481-20150710-11.
  29. Christensen RD, Wiedmeier SE, Yaish HM. A neonate with congenital amegakaryocytic thrombocytopenia associated with a chromosomal microdeletion at 21q22.11 including the gene RUNX1. J Perinatol 2013;33(3):242–244. DOI: 10.1038/jp.2012.53.
  30. Bussel JB, Vander Haar EL, Berkowitz RL. New developments in fetal and neonatal alloimmune thrombocytopenia. Am J Obstet Gynecol 2021;225(2):120–127. DOI: 10.1016/j.ajog.2021.04.211.
  31. O'Toole TE, Loftus JC, Plow EF, et al. Efficient surface expression of platelet GPIIb-IIIa requires both subunits. Blood 1989;74(1): 14–18. PMID: 2752106.
  32. Maslanka K, Yassai M, Gorski J. Molecular identification of T cells that respond in a primary bulk culture to a peptide derived from a platelet glycoprotein implicated in neonatal alloimmune thrombocytopenia. J Clin Invest 1996;98(8):1802–1808. DOI: 10.1172/JCI118980.
  33. Curtis BR, McFarland JG. Human platelet antigens–2013. Vox Sang 2014;106(2):93–102. DOI: 10.1111/vox.12085.
  34. Davoren A, Curtis BR, Aster RH, et al. Human platelet antigen-specific alloantibodies implicated in 1162 cases of neonatal alloimmune thrombocytopenia. Transfusion 2004;44(8):1220–1225. DOI: 10.1111/j.1537-2995.2004.04026.x.
  35. Hayashi T, Hirayama F. Advances in alloimmune thrombocytopenia: perspectives on current concepts of human platelet antigens, antibody detection strategies, and genotyping. Blood Transfus 2015;13(3):380–390. DOI: 10.2450/2015.0275-14.
  36. Van den Hof MC, Nicolaides KH. Platelet count in normal, small, and anemic fetuses. Am J Obstet Gynecol 1990;162(3):735–739. DOI: 10.1016/0002-9378(90)90997-l.
  37. Bayat B, Traum A, Berghofer H, et al. Current anti-HPA-1a standard antibodies react with the beta3 integrin subunit but not with alphaIIbbeta3 and alphavbeta3 complexes. Thromb Haemost 2019;119(11):1807–1815. DOI: 10.1055/s-0039-1696716.
  38. Kumpel BM, Sibley K, Jackson DJ, et al. Ultrastructural localization of glycoprotein IIIa (GPIIIa, beta 3 integrin) on placental syncytiotrophoblast microvilli: implications for platelet alloimmunization during pregnancy. Transfusion 2008;48(10):2077–2086. DOI: 10.1111/j.1537-2995.2008.01832.x.
  39. Huang J, Li X, Shi X, et al. Platelet integrin alphaIIbbeta3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019;12(1):26. DOI: 10.1186/s13045-019-0709-6.
  40. Chen ZY, Oswald BE, Sullivan JA, et al. Platelet physiology and immunology: pathogenesis and treatment of classical and non-classical fetal and neonatal alloimmune thrombocytopenia. Ann Blood 2019;4:29. DOI: 10.21037/aob.2019.12.04.
  41. Arnold DM, Smith JW, Kelton JG. Diagnosis and management of neonatal alloimmune thrombocytopenia. Transfus Med Rev 2008;22(4):255–267. DOI: 10.1016/j.tmrv.2008.05.003.
  42. Stuge TB, Skogen B, Ahlen MT, et al. The cellular immunobiology associated with fetal and neonatal alloimmune thrombocytopenia. Transfus Apher Sci 2011;45(1):53–59. DOI: 10.1016/j.transci.2011.06.003.
  43. Peterson JA, McFarland JG, Curtis BR, et al. Neonatal alloimmune thrombocytopenia: pathogenesis, diagnosis and management. Br J Haematol 2013;161(1):3–14. DOI: 10.1111/bjh.12235.
  44. Kjeldsen–Kragh J, Killie MK, Tomter G, et al. A screening and intervention program aimed to reduce mortality and serious morbidity associated with severe neonatal alloimmune thrombocytopenia. Blood 2007;110(3):833–839. DOI: 10.1182/blood-2006-08-040121.
  45. Kjeldsen–Kragh J, Titze TL, Lie BA, et al. HLA-DRB3*01:01 exhibits a dose-dependent impact on HPA-1a antibody levels in HPA-1a-immunized women. Blood Adv 2019;3(7):945–951. DOI: 10.1182/bloodadvances.2019032227.
  46. Metcalfe P, Ouwehand WH, Sands D, et al. Collaborative studies to establish the first WHO reference reagent for detection of human antibody against human platelet antigen-5b. Vox Sang 2003;84(3):237–240. DOI: 10.1046/j.1423-0410.2003.00281.x.
  47. Newman PJ, Derbes RS, Aster RH. The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J Clin Invest 1989;83(5):1778–1781. DOI: 10.1172/JCI114082.
  48. Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2012;129(3):220–224. DOI: 10.1016/j.thromres.2011.11.036.
  49. Newman PJ, Aster R, Boylan B. Human platelets circulating in mice: applications for interrogating platelet function and survival, the efficacy of antiplatelet therapeutics, and the molecular basis of platelet immunological disorders. J Thromb Haemost 2007;5 (Suppl. 1):305–309. DOI: 10.1111/j.1538-7836.2007.02466.x.
  50. Srzentic SJ, Lilic M, Vavic N, et al. Genotyping of eight human platelet antigen systems in Serbian blood donors: Foundation for Platelet Apheresis Registry. Transfus Med Hemother 2021;48(4):228–233. DOI: 10.1159/000514487.
  51. Peterson JA, Balthazor SM, Curtis BR, et al. Maternal alloimmunization against the rare platelet-specific antigen HPA-9b (Max a) is an important cause of neonatal alloimmune thrombocytopenia. Transfusion 2005;45(9):1487–1495. DOI: 10.1111/j.1537-2995.2005.00561.x.
  52. Ghevaert C, Wilcox DA, Fang J, et al. Developing recombinant HPA-1a-specific antibodies with abrogated Fcgamma receptor binding for the treatment of fetomaternal alloimmune thrombocytopenia. J Clin Invest 2008;118(8):2929–2938. DOI: 10.1172/JCI34708.
  53. Ogasawara K, Ueki J, Takenaka M, et al. Study on the expression of ABH antigens on platelets. Blood 1993;82(3):993–999. PMID: 8338959.
  54. Kankirawatana S, Kupatawintu P, Juji T, et al. Neonatal alloimmune thrombocytopenia due to anti-Nak(a). Transfusion 2001;41(3): 375–377. DOI: 10.1046/j.1537-2995.2001.41030375.x.
  55. King KE, Kao KJ, Bray PF, et al. The role of HLA antibodies in neonatal thrombocytopenia: a prospective study. Tissue Antigens 1996;47(3):206–211. DOI: 10.1111/j.1399-0039.1996.tb02542.x.
  56. Thude H, Schorner U, Helfricht C, et al. Neonatal alloimmune thrombocytopenia caused by human leucocyte antigen-B27 antibody. Transfus Med 2006;16(2):143–149. DOI: 10.1111/j.1365-3148.2006.00634.x.
  57. Sasaki M, Yagihashi A, Kobayashi D, et al. Neonatal alloimmune thrombocytopenia due to anti-human leukocyte antigen antibody: a case report. Pediatr Hematol Oncol 2001;18(8):519–524. DOI: 10.1080/088800101753328484.
  58. Espinoza JP, Caradeux J, Norwitz ER, et al. Fetal and neonatal alloimmune thrombocytopenia. Rev Obstet Gynecol 2013;6(1): e15–e21. PMCID: PMC3651544.
  59. Tiller H, Killie MK, Skogen B, et al. Neonatal alloimmune thrombocytopenia in Norway: poor detection rate with nonscreening versus a general screening programme. BJOG 2009;116(4):594–598. DOI: 10.1111/j.1471-0528.2008.02068.x.
  60. Kamphuis MM, Paridaans N, Porcelijn L, et al. Screening in pregnancy for fetal or neonatal alloimmune thrombocytopenia: systematic review. BJOG 2010;117(11):1335–1343. DOI: 10.1111/j.1471-0528.2010.02657.x.
  61. von dem Borne AE, Verheugt FW, Oosterhof F, et al. A simple immunofluorescence test for the detection of platelet antibodies. Br J Haematol 1978;39(2):195–207. DOI: 10.1111/j.1365-2141.1978.tb01089.x.
  62. Peterson JA, Gitter M, Bougie DW, et al. Low-frequency human platelet antigens as triggers for neonatal alloimmune thrombocytopenia. Transfusion 2014;54(5):1286–1293. DOI: 10.1111/trf.12450.
  63. Kiefel V. The MAIPA assay and its applications in immunohaematology. Transfus Med 1992;2(3):181–188. DOI: 10.1111/j.1365-3148.1992.tb00153.x.
  64. Sarkar RS, Philip J, Jain N. Detection and identification of platelet-associated alloantibodies by a solid-phase modified antigen capture Elisa (MACE) technique and its correlation to platelet refractoriness in multi platelet concentrate transfused patients. Indian J Hematol Blood Transfus 2015;31(1):77–84. DOI: 10.1007/s12288-014-0374-4.
  65. Brighton TA, Evans S, Castaldi PA, et al. Prospective evaluation of the clinical usefulness of an antigen-specific assay (MAIPA) in idiopathic thrombocytopenic purpura and other immune thrombocytopenias. Blood 1996;88(1):194–201. PMID: 8704174.
  66. Dreyfus M, Kaplan C, Verdy E, et al. Frequency of immune thrombocytopenia in newborns: a prospective study. Immune Thrombocytopenia Working Group. Blood 1997;89(12):4402–4406. PMID: 9192764.
  67. Smith JW, Hayward CP, Warkentin TE, et al. Investigation of human platelet alloantigens and glycoproteins using non-radioactive immunoprecipitation. J Immunol Methods 1993;158(1):77–85. DOI: 10.1016/0022-1759(93)90260-e.
  68. Vrbensky JR, Moore JE, Arnold DM, et al. The sensitivity and specificity of platelet autoantibody testing in immune thrombocytopenia: a systematic review and meta-analysis of a diagnostic test. J Thromb Haemost 2019;17(5):787–794. DOI: 10.1111/jth.14419.
  69. Metzner K, Bauer J, Ponzi H, et al. Detection and identification of platelet antibodies using a sensitive multiplex assay system–platelet antibody bead array. Transfusion 2017;57(7):1724–1733. DOI: 10.1111/trf.14122.
  70. Bertrand G, Jallu V, Gouet M, et al. Quantification of human platelet antigen-1a antibodies with the monoclonal antibody immobilization of platelet antigens procedure. Transfusion 2005;45(8):1319–1323. DOI: 10.1111/j.1537-2995.2005.00195.x.
  71. Hamidpour M, Khalili G, Tajic N, et al. Comparative of three methods (ELIZA, MAIPA and flow cytometry) to determine anti-platelet antibody in children with ITP. Am J Blood Res 2014;4(2):86–92. PMID: 25755908.
  72. Winkelhorst D, Porcelijn L, Muizelaar E, et al. Fast and low-cost direct ELISA for high-throughput serological HPA-1a typing. Transfusion 2019;59(9):2989–2996. DOI: 10.1111/trf.15454.
  73. Hurd CM, Cavanagh G, Schuh A, et al. Genotyping for platelet-specific antigens: techniques for the detection of single nucleotide polymorphisms. Vox Sang 2002;83(1):1–12. DOI: 10.1046/j.1423-0410.2002.00187.x.
  74. Kengkate M, Butthep P, Kupatawintu P, et al. Comparison of a simple-probe real-time PCR and multiplex PCR techniques for HPA-1 to HPA-6 and HPA-15 genotyping. J Clin Lab Anal 2015;29(2):94–99. DOI: 10.1002/jcla.21734.
  75. Wu GG, Kaplan C, Curtis BR, et al. Report on the 14th International Society of Blood Transfusion Platelet Immunology Workshop. Vox Sang 2010;99(4):375–381. DOI: 10.1111/j.1423-0410.2010.01348.x.
  76. Curtis BR, Edwards JT, Hessner MJ, et al. Blood group A and B antigens are strongly expressed on platelets of some individuals. Blood 2000;96(4):1574–1581. PMID: 10942408.
  77. Curtis BR. Genotyping for human platelet alloantigen polymorphisms: applications in the diagnosis of alloimmune platelet disorders. Semin Thromb Hemost 2008;34(6):539–548. DOI: 10.1055/s-0028-1103365.
  78. Hashmi G, Shariff T, Seul M, et al. A flexible array format for large-scale, rapid blood group DNA typing. Transfusion 2005;45(5):680–688. DOI: 10.1111/j.1537-2995.2005.04362.x.
  79. Dunbar SA. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 2006;363(1–2):71–82. DOI: 10.1016/j.cccn.2005.06.023.
  80. Shehata N, Denomme GA, Hannach B, et al. Mass-scale high-throughput multiplex polymerase chain reaction for human platelet antigen single-nucleotide polymorphisms screening of apheresis platelet donors. Transfusion 2011;51(9):2028–2033. DOI: 10.1111/j.1537-2995.2011.03082.x.
  81. Montpetit A, Phillips MS, Mongrain I, et al. High-throughput molecular profiling of blood donors for minor red blood cell and platelet antigens. Transfusion 2006;46(5):841–848. DOI: 10.1111/j.1537-2995.2006.00805.x.
  82. Arinsburg SA, Shaz BH, Westhoff C, et al. Determination of human platelet antigen typing by molecular methods: importance in diagnosis and early treatment of neonatal alloimmune thrombocytopenia. Am J Hematol 2012;87(5):525–528. DOI: 10.1002/ajh.23111.
  83. Morel–Kopp MC, Clemenceau S, Aurousseau MH, et al. Human platelet alloantigen typing: PCR analysis is not a substitute for serological methods. Transfus Med 1994;4(1):9–14. DOI: 10.1111/j.1365-3148.1994.tb00237.x.
  84. Watkins NA, Schaffner–Reckinger E, Allen DL, et al. HPA-1a phenotype–genotype discrepancy reveals a naturally occurring Arg93Gln substitution in the platelet beta 3 integrin that disrupts the HPA-1a epitope. Blood 2002;99(5):1833–1839. DOI: 10.1182/blood.v99.5.1833.
  85. Wyckoff SL, Hudson KE. Targeting the neonatal Fc receptor (FcRn) to treat autoimmune diseases and maternal–fetal immune cytopenias. Transfusion 2021;61(5):1350–1354. DOI: 10.1111/trf.16341.
  86. Ohto H. Neonatal alloimmune thrombocytopenia. Nihon Rinsho 1997;55(9):2310–2234. PMID: 9301295.
  87. Kjeldsen–Kragh J, Bengtsson J. Fetal and neonatal alloimmune thrombocytopenia: new prospects for fetal risk assessment of HPA-1a-negative pregnant women. Transfus Med Rev 2020;34(4):270–276. DOI: 10.1016/j.tmrv.2020.09.004.
  88. Wagner N, Kagan K, Maden Z, et al. Neonatal alloimmune thrombocytopenia. Geburtshilfe Frauenheilkd 2008;68(4):406–408. DOI: 10.1055/s-2008-1038593.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.