Register      Login

VOLUME 1 , ISSUE 1 ( January-March, 2022 ) > List of Articles


Group B Streptococcal Infections in Neonates

Kirtikumar Upadhyay, Ajay Talati

Keywords : Antibiotics, Bacterial components, Group B streptococcus, Group B streptococcus immune response, Group B streptococcus vaccine, Host–pathogen, Inflammation

Citation Information : Upadhyay K, Talati A. Group B Streptococcal Infections in Neonates. 2022; 1 (1):109-119.

DOI: 10.5005/jp-journals-11002-0022

License: CC BY-NC 4.0

Published Online: 31-03-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Despite significant advances in preventive and therapeutic approaches, Group B streptococcus (GBS) still remains one of the most common causes of sepsis and meningitis in neonates. There is considerable variability in the immune responses that is related to microbial virulence, bacterial load, and immaturity of immune response system of the host. In this review, the mechanisms of GBS invasion and host–pathogen interactions are described. Understanding the host immune response to various bacterial components of GBS could help in refining our future strategies to mitigate the immune response and improve neonatal outcomes due to GBS sepsis.

  1. Lancefield RC, Hare R. The serological differentiation of pathogenic and non-pathogenic strains of hemolytic streptococci from parturient women. J Exp Med 1935;61(3):335–349. DOI: 10.1084/jem.61.3.335.
  2. Eickhoff TC, Klein JO, Daly AK, et al. Neonatal sepsis and other infections due to group B beta-hemolytic streptococci. N Engl J Med 1964;271:1221–1228. DOI: 10.1056/NEJM196412102712401.
  3. Jordan HT, Farley MM, Craig A, et al. Revisiting the need for vaccine prevention of late-onset neonatal group B streptococcal disease: a multistate, population-based analysis. Pediatr Infect Dis J 2008;27(12):1057–1064. DOI: 10.1097/INF.0b013e318180b3b9.
  4. Stoll BJ, Hansen NI, Sanchez PJ, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011;127(5):817–826. DOI: 10.1542/peds.2010-2217.
  5. Regan JA. Epidemiology of group B streptococcal colonization in pregnancy. Isr J Med Sci 1983;19(10):906–909. PMID: 6363347.
  6. Campbell JR, Hillier SL, Krohn MA, et al. Group B streptococcal colonization and serotype-specific immunity in pregnant women at delivery. Obstet Gynecol 2000;96(4):498–503. DOI: 10.1016/s0029-7844(00)00977-7.
  7. Edwards MS, Rench MA, Palazzi DL, et al. Group B streptococcal colonization and serotype-specific immunity in healthy elderly persons. Clin Infect Dis 2005;40(3):352–357. DOI: 10.1086/426820.
  8. Vornhagen J, Adams Waldorf KM, Rajagopal L. Perinatal group B streptococcal infections: virulence factors, immunity, and prevention strategies. Trends Microbiol 2017;25(11):919–931. DOI: 10.1016/j.tim.2017.05.013.
  9. Phares CR, Lynfield R, Farley MM, et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. Journal of the American Medical Association 2008;299(17):2056–2065. DOI: 10.1001/jama.299.17.2056.
  10. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Group B Streptococcus, 2008. 2009.
  11. Boyer KM, Gotoff SP. Strategies for chemoprophylaxis of GBS early-onset infections. Antibiot Chemother (1971) 1985;35:267–280. DOI: 10.1159/000410380.
  12. Alp F, Findik D, Dagi HT, et al. Screening and genotyping of group B streptococcus in pregnant and non-pregnant women in Turkey. J Infect Dev Ctries 2016;10(3):222–226. DOI: 10.3855/jidc.6190.
  13. Le Doare K, Heath PT. An overview of global GBS epidemiology. Vaccine 2013;31 (Suppl 4):D7–D12. DOI: 10.1016/j.vaccine.2013.01.009.
  14. Manning SD, Lewis MA, Springman AC, et al. Genotypic diversity and serotype distribution of group B streptococcus isolated from women before and after delivery. Clin Infect Dis 2008;46(12): 1829–1837. DOI: 10.1086/588296.
  15. Khan MA, Faiz A, Ashshi AM. Maternal colonization of group B streptococcus: prevalence, associated factors and antimicrobial resistance. Ann Saudi Med 2015;35(6):423–427. DOI: 10.5144/0256-4947.2015.423.
  16. Capan-Melser M, Mombo Ngoma G, Akerey-Diop D, et al. Evaluation of intermittent preventive treatment of malaria against group B Streptococcus colonization in pregnant women: a nested analysis of a randomized controlled clinical trial of sulfadoxine/pyrimethamine versus mefloquine. J Antimicrob Chemother 2015;70(6):1898–1902. DOI: 10.1093/jac/dkv041.
  17. Stapleton RD, Kahn JM, Evans LE, et al. Risk factors for group B streptococcal genitourinary tract colonization in pregnant women. Obstet Gynecol 2005;106(6):1246–1252. DOI: 10.1097/01.AOG.0000187893.52488.4b.
  18. Akoh CC, Pressman EK, Cooper E, et al. Prevalence and risk factors for infections in a pregnant adolescent population. J Pediatr Adolesc Gynecol 2017;30(1):71–75. DOI: 10.1016/j.jpag.2016.08.001.
  19. Boyer KM, Gotoff SP. Prevention of early-onset neonatal group B streptococcal disease with selective intrapartum chemoprophylaxis. N Engl J Med 1986;314(26):1665–1669. DOI: 10.1056/NEJM198606263142603.
  20. Revised guidelines for prevention of early-onset group B streptococcal (GBS) infection. American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn. Pediatrics 1997;99(3):489–496. DOI: 10.1542/peds.99.3.489.
  21. Hanna MNA. Streptococcus group B. StatPearls [Internet]. StatPearls Publishing; 2022. Available from:
  22. Austrian R, Gold J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 1964;60:759–776. DOI: 10.7326/0003-4819-60-5-759.
  23. Karlstrom A, Boyd KL, English BK, et al. Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J Infect Dis 2009;199(3):311–319. DOI: 10.1086/596051.
  24. Mufson MA, Stanek RJ. Bacteremic pneumococcal pneumonia in one American City: a 20-year longitudinal study, 1978–1997. Am J Med 1999;107(1A):34S–43S. DOI: 10.1016/s0002-9343(99)00098-4.
  25. Kohli-Lynch M, Russell NJ, Seale AC, et al. Neurodevelopmental impairment in children after group B streptococcal disease worldwide: systematic review and meta-analyses. Clin Infect Dis 2017;65(suppl_2):S190–S199. DOI: 10.1093/cid/cix663.
  26. Rubens CE, Raff HV, Jackson JC, et al. Pathophysiology and histopathology of group B streptococcal sepsis in Macaca nemestrina primates induced after intraamniotic inoculation: evidence for bacterial cellular invasion. J Infect Dis 1991;164(2):320–330. DOI: 10.1093/infdis/164.2.320.
  27. Doran KS, Nizet V. Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol 2004;54(1):23–31. DOI: 10.1111/j.1365-2958.2004.04266.x.
  28. Lim JJ, Grinstein S, Roth Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front Cell Infect Microbiol 2017;7:191. DOI: 10.3389/fcimb.2017.00191.
  29. Johri AK, Paoletti LC, Glaser P, et al. Group B Streptococcus: global incidence and vaccine development. Nat Rev Microbiol 2006;4(12):932–942. DOI: 10.1038/nrmicro1552.
  30. Madzivhandila M, Adrian PV, Cutland CL, et al. Serotype distribution and invasive potential of group B Streptococcus isolates causing disease in infants and colonizing maternal-newborn dyads. PLoS One 2011;6(3):e17861. DOI: 10.1371/journal.pone.0017861.
  31. Lee CC, Hsu JF, Prasad Janapatla R, et al. Clinical and microbiological characteristics of Group B Streptococcus from pregnant women and diseased infants in intrapartum antibiotic prophylaxis era in Taiwan. Sci Rep 2019;9(1):13525. DOI: 10.1038/s41598-019-49977-2.
  32. Chen SL. Genomic insights into the distribution and evolution of group B Streptococcus. Front Microbiol 2019;10:1447. DOI: 10.3389/fmicb.2019.01447.
  33. Lefebure T, Stanhope MJ. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 2007;8(5):R71. DOI: 10.1186/gb-2007-8-5-r71.
  34. Vallejo JG, Baker CJ, Edwards MS. Roles of the bacterial cell wall and capsule in induction of tumor necrosis factor alpha by type III group B streptococci. Infect Immun 1996;64(12):5042–5046. DOI: 10.1128/iai.64.12.5042-5046.1996.
  35. Thomas L, Cook L. Two-component signal transduction systems in the human pathogen Streptococcus agalactiae. Infect Immun 2020;88(7). DOI: 10.1128/IAI.00931-19.
  36. Burnside K, Lembo A, Harrell MI, et al. Serine/threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B Streptococcus. J Biol Chem 2011;286(51):44197–44210. DOI: 10.1074/jbc.M111.313486.
  37. Rajagopal L. Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol 2009;4(2):201–221. DOI: 10.2217/17460913.4.2.201.
  38. Shelver D, Rajagopal L, Harris TO, et al. MtaR, a regulator of methionine transport, is critical for survival of group B streptococcus in vivo. J Bacteriol 2003;185(22):6592–6599. DOI: 10.1128/JB.185.22.6592-6599.2003.
  39. Leyn SA, Suvorova IA, Kholina TD, et al. Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria. PLoS One 2014;9(11):e113714. DOI: 10.1371/journal.pone.0113714.
  40. Gravekamp C, Kasper DL, Michel JL, et al. Immunogenicity and protective efficacy of the alpha C protein of group B streptococci are inversely related to the number of repeats. Infect Immun 1997;65(12):5216–5221. DOI: 10.1128/iai.65.12.5216-5221.1997.
  41. Mu R, Kim BJ, Paco C, et al. Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. Infect Immun 2014;82(6):2276–2286. DOI: 10.1128/IAI.01559-13.
  42. Bebien M, Hensler ME, Davanture S, et al. The pore-forming toxin beta hemolysin/cytolysin triggers p38 MAPK-dependent IL-10 production in macrophages and inhibits innate immunity. PLoS Pathog 2012;8(7):e1002812. DOI: 10.1371/journal.ppat.1002812.
  43. Jin T, Brefo-Mensah E, Fan W, et al. Crystal structure of the Streptococcus agalactiae CAMP factor provides insights into its membrane-permeabilizing activity. J Biol Chem 2018;293(30): 11867–11877. DOI: 10.1074/jbc.RA118.002336.
  44. Kvam AI, Mavenyengwa RT, Radtke A, et al. Streptococcus agalactiae alpha-like protein 1 possesses both cross-reacting and Alp1-specific epitopes. Clin Vaccine Immunol 2011;18(8):1365–1370. DOI: 10.1128/CVI.05005-11.
  45. Kong F, Gowan S, Martin D, et al. Molecular profiles of group B streptococcal surface protein antigen genes: relationship to molecular serotypes. J Clin Microbiol 2002;40(2):620–626. DOI: 10.1128/JCM.40.2.620-626.2002.
  46. Pietrocola G, Arciola CR, Rindi S, et al. Streptococcus agalactiae Non-Pilus, cell wall-anchored proteins: involvement in colonization and pathogenesis and potential as vaccine candidates. Front Immunol 2018;9:602. DOI: 10.3389/fimmu.2018.00602.
  47. Wang NY, Patras KA, Seo HS, et al. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization. J Infect Dis 2014;210(6):982–991. DOI: 10.1093/infdis/jiu151.
  48. Buscetta M, Papasergi S, Firon A, et al. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. J Biol Chem 2014;289(30):21003–21015. DOI: 10.1074/jbc.M114.553073.
  49. Buscetta M, Firon A, Pietrocola G, et al. PbsP, a cell wall-anchored protein that binds plasminogen to promote hematogenous dissemination of group B Streptococcus. Mol Microbiol 2016;101(1): 27–41. DOI: 10.1111/mmi.13357.
  50. Tazi A, Disson O, Bellais S, et al. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J Exp Med 2010;207(11):2313–2322. DOI: 10.1084/jem.20092594.
  51. Santi I, Pezzicoli A, Bosello M, et al. Functional characterization of a newly identified group B Streptococcus pullulanase eliciting antibodies able to prevent alpha-glucans degradation. PLoS One 2008;3(11):e3787. DOI: 10.1371/journal.pone.0003787.
  52. Aboul Anean HED. Biopolymer pullulan (polysaccharide) with potential as a edible coating & film and their application in food additives and drug. J Nutr Health Food Eng 2021;11(1):7–9. DOI: 10.15406/jnhfe.2021.11.00346.
  53. Cheng Q, Stafslien D, Purushothaman SS, et al. The group B streptococcal C5a peptidase is both a specific protease and an invasin. Infect Immun 2002;70(5):2408–2413. DOI: 10.1128/IAI.70.5.2408-2413.2002.
  54. Harris TO, Shelver DW, Bohnsack JF, et al. A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J Clin Invest 2003;111(1):61–70. DOI: 10.1172/JCI16270.
  55. Al Safadi R, Amor S, Hery-Arnaud G, et al. Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PLoS One 2010;5(5):e10794. DOI: 10.1371/journal.pone.0010794.
  56. Imai T, Matsumura T, Mayer-Lambertz S, et al. Lipoteichoic acid anchor triggers Mincle to drive protective immunity against invasive group A Streptococcus infection. Proc Natl Acad Sci USA 2018;115(45): E10662–E10671. DOI: 10.1073/pnas.1809100115.
  57. Sun X, Wang Z, Bi Y, et al. Genetic and functional characterization of the hyaluronate lyase HylB and the beta-N-acetylglucosaminidase HylZ in Streptococcus zooepidemicus. Curr Microbiol 2015;70(1): 35–42. DOI: 10.1007/s00284-014-0679-4.
  58. Hamilton A, Popham DL, Carl DJ, et al. Penicillin-binding protein 1a promotes resistance of group B streptococcus to antimicrobial peptides. Infect Immun Nov 2006;74(11):6179–6187. DOI: 10.1128/IAI.00895-06.
  59. Martins ER, Andreu A, Melo-Cristino J, et al. Distribution of pilus islands in Streptococcus agalactiae that cause human infections: insights into evolution and implication for vaccine development. Clin Vaccine Immunol 2013;20(2):313–316. DOI: 10.1128/CVI.00529-12.
  60. Martin TR, Ruzinski JT, Rubens CE, et al. The effect of type-specific polysaccharide capsule on the clearance of group B streptococci from the lungs of infant and adult rats. J Infect Dis 1992;165(2):306–314. DOI: 10.1093/infdis/165.2.306.
  61. Rubens CE, Wessels MR, Heggen LM, et al. Transposon mutagenesis of type III group B Streptococcus: correlation of capsule expression with virulence. Proc Natl Acad Sci USA 1987;84(20):7208–7212. DOI: 10.1073/pnas.84.20.7208.
  62. Doran KS, Liu GY, Nizet V. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 2003;112(5):736–744. DOI: 10.1172/JCI17335.
  63. Chaffin DO, Mentele LM, Rubens CE. Sialylation of group B streptococcal capsular polysaccharide is mediated by cpsK and is required for optimal capsule polymerization and expression. J Bacteriol 2005;187(13):4615–4626. DOI: 10.1128/JB.187.13.4615-4626.2005.
  64. Armistead B, Herrero-Foncubierta P, Coleman M, et al. Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection. Nat Commun 2020;11(1):1502. DOI: 10.1038/s41467-020-15282-0.
  65. Kenzel S, Henneke P. The innate immune system and its relevance to neonatal sepsis. Curr Opin Infect Dis 2006;19(3):264–270. DOI: 10.1097/
  66. Kenzel S, Mancuso G, Malley R, et al. c-Jun kinase is a critical signaling molecule in a neonatal model of group B streptococcal sepsis. J Immunol 2006;176(5):3181–3188. DOI: 10.4049/jimmunol.176.5.3181.
  67. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 2007;7(5):379–390. DOI: 10.1038/nri2075.
  68. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):783–801. DOI: 10.1016/j.cell.2006.02.015.
  69. Henneke P, Morath S, Uematsu S, et al. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 2005;174(10):6449–6455. DOI: 10.4049/jimmunol.174.10.6449.
  70. Han SH, Kim JH, Martin M, et al. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 2003;71(10):5541–5548. DOI: 10.1128/IAI.71.10.5541-5548.2003.
  71. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54 Pt 1:1–13. DOI: 10.1101/sqb.1989.054.01.003.
  72. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22(2):240–273, Table of Contents. DOI: 10.1128/CMR.00046-08.
  73. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410(6832):1099–1103. DOI: 10.1038/35074106.
  74. Bowie A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000;67(4):508–514. DOI: 10.1002/jlb.67.4.508.
  75. Mancuso G, Midiri A, Beninati C, et al. Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol 2004;172(10):6324–6329. DOI: 10.4049/jimmunol.172.10.6324.
  76. Henneke P, Takeuchi O, van Strijp JA, et al. Novel engagement of CD14 and multiple toll-like receptors by group B streptococci. J Immunol 2001;167(12):7069–7076. DOI: 10.4049/jimmunol.167.12.7069.
  77. Upadhyay K, Park JE, Yoon TW, et al. Group B streptococci induce proinflammatory responses via a protein kinase D1-dependent pathway. J Immunol 2017;198(11):4448–4457. DOI: 10.4049/jimmunol.1601089.
  78. Berner R, Csorba J, Brandis M. Different cytokine expression in cord blood mononuclear cells after stimulation with neonatal sepsis or colonizing strains of Streptococcus agalactiae. Pediatr Res 2001;49(5):691–697. DOI: 10.1203/00006450-200105000-00014.
  79. Chelvarajan RL, Collins SM, Doubinskaia IE, et al. Defective macrophage function in neonates and its impact on unresponsiveness of neonates to polysaccharide antigens. J Leukoc Biol 2004;75(6):982–994. DOI: 10.1189/jlb.0403179.
  80. Williams PA, Bohnsack JF, Augustine NH, et al. Production of tumor necrosis factor by human cells in vitro and in vivo, induced by group B streptococci. J Pediatr 1993;123(2):292–300. DOI: 10.1016/s0022-3476(05)81706-8.
  81. Peters AM, Bertram P, Gahr M, et al. Reduced secretion of interleukin-1 and tumor necrosis factor-alpha by neonatal monocytes. Biol Neonate 1993;63(3):157–162. DOI: 10.1159/000243926.
  82. Gay NJ. Role of self-organising myddosome oligomers in inflammatory signalling by Toll-like receptors. BMC Biol 2019;17(1):15. DOI: 10.1186/s12915-019-0637-5.
  83. Talati AJ, Kim HJ, Kim YI, et al. Role of bacterial DNA in macrophage activation by group B streptococci. Microbes Infect 2008;10(10–11):1106–1113. DOI: 10.1016/j.micinf.2008.06.001.
  84. Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004;4(7):553–564. DOI: 10.1038/nri1394.
  85. Krishnan S, Craven M, Welliver RC, et al. Differences in participation of innate and adaptive immunity to respiratory syncytial virus in adults and neonates. J Infect Dis 2003;188(3):433–439. DOI: 10.1086/376530.
  86. Fabbrini M, Rigat F, Rinaudo CD, et al. The protective value of maternal group B streptococcus antibodies: quantitative and functional analysis of naturally acquired responses to capsular polysaccharides and pilus proteins in European Maternal Sera. Clin Infect Dis 2016;63(6):746–753. DOI: 10.1093/cid/ciw377.
  87. Lin FY, Weisman LE, Azimi PH, et al. Level of maternal IgG anti-group B streptococcus type III antibody correlated with protection of neonates against early-onset disease caused by this pathogen. J Infect Dis 2004;190(5):928–934. DOI: 10.1086/422756.
  88. Baker CJ, Kasper DL. Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N Engl J Med 1976;294(14):753–756. DOI: 10.1056/NEJM197604012941404.
  89. Bauer K, Zemlin M, Hummel M, et al. Diversification of Ig heavy chain genes in human preterm neonates prematurely exposed to environmental antigens. J Immunol 2002;169(3):1349–1356. DOI: 10.4049/jimmunol.169.3.1349.
  90. Lemire P, Galbas T, Thibodeau J, et al. Natural killer cell functions during the innate immune response to pathogenic streptococci. Front Microbiol 2017;8:1196. DOI: 10.3389/fmicb.2017.01196.
  91. Marodi L. Innate cellular immune responses in newborns. Clin Immunol 2006;118(2–3):137–144. DOI: 10.1016/j.clim.2005.10.012.
  92. Adkins B. Heterogeneity in the CD4 T cell compartment and the variability of neonatal immune responsiveness. Curr Immunol Rev 2007;3(3):151–159. DOI: 10.2174/157339507781483496.
  93. Janeway CA, Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216. DOI: 10.1146/annurev.immunol.20.083001.084359.
  94. Lin J, Haridas S, Barenkamp SJ, et al. Neonatal neutrophils stimulated by group B Streptococcus induce a proinflammatory T-helper cell bias. Pediatr Res 2018;83(3):739–746. DOI: 10.1038/pr.2017.272.
  95. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999;17:593–623. DOI: 10.1146/annurev.immunol.17.1.593.
  96. McEvoy LT, Zakem-Cloud H, Tosi MF. Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. Blood 1996;87(9):3929–3933. PMID: 8611722.
  97. Henneke P, Takeuchi O, Malley R, et al. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol 2002;169(7):3970–3977. DOI: 10.4049/jimmunol.169.7.3970.
  98. Gahr M, Schulze M, Scheffczyk D, et al. Diminished release of lactoferrin from polymorphonuclear leukocytes of human neonates. Acta Haematol 1987;77(2):90–94. DOI: 10.1159/000205965.
  99. Bowdy BD, Marple SL, Pauly TH, et al. Oxygen radical-dependent bacterial killing and pulmonary hypertension in piglets infected with group B streptococci. Am Rev Respir Dis 1990;141(3):648–653. DOI: 10.1164/ajrccm/141.3.648.
  100. Kallman J, Schollin J, Schalen C, et al. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed 1998;78(1):F46–F50. DOI: 10.1136/fn.78.1.f46.
  101. Poyart C, Pellegrini E, Gaillot O, et al. Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect Immun 2001;69(8):5098–5106. DOI: 10.1128/IAI.69.8.5098-5106.2001.
  102. Villamor E, Perez Vizcaino F, Tamargo J, et al. Effects of group B Streptococcus on the responses to U46619, endothelin-1, and noradrenaline in isolated pulmonary and mesenteric arteries of piglets. Pediatr Res 1996;40(6):827–833. DOI: 10.1203/00006450-199612000-00009.
  103. Marodi L, Leijh PC, van Furth R. Characteristics and functional capacities of human cord blood granulocytes and monocytes. Pediatr Res 1984;18(11):1127–1131. DOI: 10.1203/00006450-198411000-00014.
  104. Teti G, Mancuso G, Tomasello F. Cytokine appearance and effects of anti-tumor necrosis factor alpha antibodies in a neonatal rat model of group B streptococcal infection. Infect Immun 1993;61(1):227–235. DOI: 10.1128/iai.61.1.227-235.1993.
  105. Nanduri SA, Petit S, Smelser C, et al. Epidemiology of invasive early-onset and late-onset group B streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance. JAMA Pediatr 2019;173(3):224–233. DOI: 10.1001/jamapediatrics.2018.4826.
  106. Ong SW, Barkham T, Kyaw WM, et al. Characterisation of bone and joint infections due to Group B Streptococcus serotype III sequence type 283. Eur J Clin Microbiol Infect Dis 2018;37(7):1313–1317. DOI: 10.1007/s10096-018-3252-4.
  107. Scasso S, Laufer J, Rodriguez G, et al. Vaginal group B streptococcus status during intrapartum antibiotic prophylaxis. Int J Gynaecol Obstet 2015;129(1):9–12. DOI: 10.1016/j.ijgo.2014.10.018.
  108. Berardi A, Rossi C, Creti R, et al. Group B streptococcal colonization in 160 mother-baby pairs: a prospective cohort study. J Pediatr 2013;163(4):1099–104.e1. DOI: 10.1016/j.jpeds.2013.05.064.
  109. Toyofuku M, Morozumi M, Hida M, et al. Effects of intrapartum antibiotic prophylaxis on neonatal acquisition of group B Streptococci. J Pediatr 2017;190:169–173.e1. DOI: 10.1016/j.jpeds.2017.07.039.
  110. Spaetgens R, DeBella K, Ma D, et al. Perinatal antibiotic usage and changes in colonization and resistance rates of group B streptococcus and other pathogens. Obstet Gynecol 2002;100(3):525–533. DOI: 10.1016/s0029-7844(02)02068-9.
  111. Levine EM, Ghai V, Barton JJ, et al. Intrapartum antibiotic prophylaxis increases the incidence of gram-negative neonatal sepsis. Infect Dis Obstet Gynecol 1999;7(4):210–213. DOI: 10.1002/(SICI)1098-0997(1999)7:4<210::AID-IDOG10>3.0.CO;2-8.
  112. Bauserman MS, Laughon MM, Hornik CP, et al. Group B Streptococcus and Escherichia coli infections in the intensive care nursery in the era of intrapartum antibiotic prophylaxis. Pediatr Infect Dis J 2013;32(3):208–212. DOI: 10.1097/INF.0b013e318275058a.
  113. Kenyon S, Pike K, Jones DR, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet 2008;372(9646):1319–1327. DOI: 10.1016/S0140-6736(08)61203-9.
  114. Saari A, Virta LJ, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 2015;135(4):617–626. DOI: 10.1542/peds.2014-3407.
  115. Chu S, Yu H, Chen Y, et al. Periconceptional and gestational exposure to antibiotics and childhood asthma. PLoS One 2015;10(10):e0140443. DOI: 10.1371/journal.pone.0140443.
  116. McCloskey K, Vuillermin P, Carlin JB, et al. Perinatal microbial exposure may influence aortic intima-media thickness in early infancy. Int J Epidemiol 2017;46(1):209–218. DOI: 10.1093/ije/dyw042.
  117. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44 (Suppl 2):S27–S72. DOI: 10.1086/511159.
  118. Marriott HM, Mitchell TJ, Dockrell DH. Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 2008;8(6):497–509. DOI: 10.2174/156652408785747924.
  119. Waterer GW, Somes GW, Wunderink RG. Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Intern Med 2001;161(15):1837–1842. DOI: 10.1001/archinte.161.15.1837.
  120. Brinkmann KC, Talati AJ, Akbari RE, et al. Group B streptococci exposed to rifampin or clindamycin (versus ampicillin or cefotaxime) stimulate reduced production of inflammatory mediators by murine macrophages. Pediatr Res 2005;57(3):419–423. DOI: 10.1203/01.PDR.0000153946.97159.79.
  121. Upadhyay K, Hiregoudar B, Meals E, et al. Combination therapy with ampicillin and azithromycin improved outcomes in a mouse model of group B streptococcal sepsis. PLoS One 2017;12(7):e0182023. DOI: 10.1371/journal.pone.0182023.
  122. Baker CJ, Kasper DL. Group B streptococcal vaccines. Rev Infect Dis 1985;7(4):458–467. DOI: 10.1093/clinids/7.4.458.
  123. Baker CJ. The spectrum of perinatal group B streptococcal disease. Vaccine 2013;31 (Suppl 4):D3–D6. DOI: 10.1016/j.vaccine.2013.02.030.
  124. Baker CJ, Rench MA, Edwards MS, et al. Immunization of pregnant women with a polysaccharide vaccine of group B streptococcus. N Engl J Med 1988;319(18):1180–1185. DOI: 10.1056/NEJM198811033191802.
  125. Eskola J, Kayhty H, Takala AK, et al. A randomized, prospective field trial of a conjugate vaccine in the protection of infants and young children against invasive Haemophilus influenzae type b disease. N Engl J Med 1990;323(20):1381–1387. DOI: 10.1056/NEJM199011153232004.
  126. Finn A, Heath P. Conjugate vaccines. Arch Dis Child 2005;90(7): 667–669. DOI: 10.1136/adc.2005.072173.
  127. Baker CJ, Rench MA, McInnes P. Immunization of pregnant women with group B streptococcal type III capsular polysaccharide-tetanus toxoid conjugate vaccine. Vaccine 2003;21(24):3468–3472. DOI: 10.1016/s0264-410x(03)00353-0.
  128. Baker CJ, Rench MA, Fernandez M, et al. Safety and immunogenicity of a bivalent group B streptococcal conjugate vaccine for serotypes II and III. J Infect Dis 2003;188(1):66–73. DOI: 10.1086/375536.
  129. Baker CJ, Rench MA, Paoletti LC, et al. Dose-response to type V group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine in healthy adults. Vaccine 2007;25(1):55–63. DOI: 10.1016/j.vaccine.2006.07.018.
  130. Tettelin H, Masignani V, Cieslewicz MJ, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 2005;102(39):13950–13955. DOI: 10.1073/pnas.0506758102.
  131. Lin FY, Philips JB 3rd, Azimi PH, et al. Level of maternal antibody required to protect neonates against early-onset disease caused by group B Streptococcus type Ia: a multicenter, seroepidemiology study. J Infect Dis 2001;184(8):1022–1028. DOI: 10.1086/323350.
  132. Baker CJ, Carey VJ, Rench MA, et al. Maternal antibody at delivery protects neonates from early onset group B streptococcal disease. J Infect Dis 2014;209(5):781–788. DOI: 10.1093/infdis/jit549.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.