Register      Login

VOLUME 3 , ISSUE 2 ( April-June, 2024 ) > List of Articles


Abnormalities of Corpus Callosum and Other Interhemispheric Commissures

Akhil Maheshwari, Thierry AGM Huisman

Keywords : Axonal projections, Body, Commissural, Chorioallantoic placenta, Cortical layers eutherian mammals, Genu, Pyramidal neurons, Rostrum, White matter tracts

Citation Information : Maheshwari A, Huisman TA. Abnormalities of Corpus Callosum and Other Interhemispheric Commissures. 2024; 3 (2):139-156.

DOI: 10.5005/jp-journals-11002-0093

License: CC BY-NC 4.0

Published Online: 21-06-2024

Copyright Statement:  Copyright © 2024; The Author(s).


The two neocortical cerebral hemispheres are connected by white matter tracts such as the corpus callosum (CC), and the anterior and the hippocampal commissures. Complete agenesis of the CC is seen in about 7 persons per 1,000; the incidence in patients with developmental delay can be as high as 3%. In addition, many patients show a paucity, not complete absence, of commissural axons due to altered development. Others may develop secondary destruction of the CC following infarction, hemorrhage, trauma, and in some metabolic diseases. One notable structural feature in these patients with agenesis or hypogenesis of the CC are the Probst bundles (PBs), which are longitudinal, rostrocaudally oriented coiled white matter fascicles running alongside the lateral ventricles into the tapetum. The presence or absence of these PBs can affect the clinical presentation and outcome of these patients. Many patients with agenesis of the CC manifest with seizures within the first weeks of life. Others present with developmental delay and a multitude of neurological manifestations. The etiopathogenesis of agenesis of the CC is unknown and is still being investigated. These commissural defects can also be seen as a part of several genetic associations such as Aicardi syndrome, Andermann syndrome, Mowat-Wilson syndrome, and XLAG (X-linked lissencephaly with ambiguous genitalia). As of now, no specific treatment is known for any of these conditions. Careful clinical and genetic evaluation of these patients is necessary for symptomatic management and for counseling the families. In this article, we present our clinical/imaging experience and have combined it with an extensive search of the databases PubMed, EMBASE, and Scopus. To avoid bias, keywords were identified from discussions in our group and from PubMed's Medical Subject Heading (MeSH) thesaurus.

PDF Share
  1. Mihrshahi R. The corpus callosum as an evolutionary innovation. J Exp Zool B Mol Dev Evol 2006;306(1):8–17. DOI: 10.1002/jez.b.21067.
  2. Ashwell KWS. Anterior commissure versus corpus callosum: A quantitative comparison across mammals. Zoology (Jena) 2016;119(2):126–136. DOI: 10.1016/j.zool.2016.02.004.
  3. Fitsiori A, Nguyen D, Karentzos A, et al. The corpus callosum: White matter or terra incognita. Br J Radiol 2011;84(997):5–18. DOI: 10.1259/bjr/21946513.
  4. Witelson SF. The brain connection: The corpus callosum is larger in left-handers. Science 1985;229(4714):665–668. DOI: 10.1126/science.4023705.
  5. Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: The history of the corpus callosum. Braz J Med Biol Res 2003;36(4):409–420. DOI: 10.1590/s0100-879x2003000400002.
  6. Gobius I, Morcom L, Suarez R, et al. Astroglial-mediated remodeling of the interhemispheric midline is required for the formation of the corpus callosum. Cell Rep 2016;17(3):735–747. DOI: 10.1016/j.celrep.2016.09.033.
  7. Fame RM, MacDonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci 2011;34(1):41–50. DOI: 10.1016/j.tins.2010.10.002.
  8. Lynton Z, Suarez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: A review of the Probst bundles. Front Neuroanat 2023;17:1296779. DOI: 10.3389/fnana.2023.1296779.
  9. Krupa K, Bekiesinska-Figatowska M. Congenital and acquired abnormalities of the corpus callosum: A pictorial essay. Biomed Res Int 2013;2013:265619. DOI: 10.1155/2013/265619.
  10. Krause KL, Howard D, Pettersson DR, et al. Defining the normal dorsal contour of the corpus callosum with time. AJNR Am J Neuroradiol 2019;40(1):86–91. DOI: 10.3174/ajnr.A5886.
  11. Blaauw J, Meiners LC. The splenium of the corpus callosum: Embryology, anatomy, function and imaging with pathophysiological hypothesis. Neuroradiology 2020;62(5):563–585. DOI: 10.1007/s00234-019-02357-z.
  12. Goldstein A, Covington BP, Mahabadi N, et al. Neuroanatomy, Corpus Callosum. StatPearls. Treasure Island (FL)2024.
  13. Ku J, Morrison EH. Neuroanatomy, Anterior White Commissure. Treasure Island (FL): StatPearls; 2024.
  14. Postans M, Parker GD, Lundell H, et al. Uncovering a role for the dorsal hippocampal commissure in recognition memory. Cereb Cortex 2020;30(3):1001–1015. DOI: 10.1093/cercor/bhz143.
  15. Martinez-Lorenzana G, Jimenez JR, Condes-Lara M. Interamygdaloid connection of basolateral nucleus through the anterior commissure in the rat. Neurosci Lett 2004;366(2):154–157. DOI: 10.1016/j.neulet.2004.05.026.
  16. Martinez-Garcia F, Novejarque A, Lanuza E. Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Res Bull 2008;75(2–4):206–213. DOI: 10.1016/j.brainresbull.2007.10.019.
  17. Hetts SW, Sherr EH, Chao S, et al. Anomalies of the corpus callosum: An MR analysis of the phenotypic spectrum of associated malformations. AJR Am J Roentgenol 2006;187(5):1343–1348. DOI: 10.2214/AJR.05.0146.
  18. Prakash KN, Nowinski WL. Morphologic relationship among the corpus callosum, fornix, anterior commissure, and posterior commissure MRI-based variability study. Acad Radiol 2006;13(1): 24–35. DOI: 10.1016/j.acra.2005.06.018.
  19. Gupta T, Singh B, Kapoor K, et al. Age and sex related variations in corpus callosal morphology. Nepal Med Coll J 2008;10(4):215–221. PMID: 19558056.
  20. Clarke S, Kraftsik R, Van der Loos H, et al. Forms and measures of adult and developing human corpus callosum: Is there sexual dimorphism? J Comp Neurol 1989;280(2):213–230. DOI: 10.1002/cne.902800205.
  21. Kim YU, Park ES, Jung S, et al. Clinical features and associated abnormalities in children and adolescents with corpus callosal anomalies. Ann Rehabil Med 2014;38(1):138–143. DOI: 10.5535/arm.2014.38.1.138.
  22. Das JM, Geetha R. Corpus callosum agenesis. Treasure Island (FL): StatPearls Publishing; 2024.
  23. Panzaru MC, Popa S, Lupu A, et al. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022;13:958570. DOI: 10.3389/fgene.2022.958570.
  24. Morris JK, Wellesley DG, Barisic I, et al. Epidemiology of congenital cerebral anomalies in Europe: A multicentre, population-based EUROCAT study. Arch Dis Child 2019;104(12):1181–1187. DOI: 10.1136/archdischild-2018-316733.
  25. Stoll C, Dott B, Roth MP. Associated anomalies in cases with agenesis of the corpus callosum. Am J Med Genet A 2019;179(10):2101–2111. DOI: 10.1002/ajmg.a.61330.
  26. Glass HC, Shaw GM, Ma C, et al. Agenesis of the corpus callosum in California 1983–2003: A population-based study. Am J Med Genet A 2008;146A(19):2495–2500. DOI: 10.1002/ajmg.a.32418.
  27. Ballardini E, Marino P, Maietti E, et al. Prevalence and associated factors for agenesis of corpus callosum in Emilia Romagna (1981–2015). Eur J Med Genet 2018;61(9):524–530. DOI: 10.1016/j.ejmg.2018.06.004.
  28. Schell-Apacik CC, Wagner K, Bihler M, et al. Agenesis and dysgenesis of the corpus callosum: Clinical, genetic and neuroimaging findings in a series of 41 patients. Am J Med Genet A 2008;146A(19):2501–2511. DOI: 10.1002/ajmg.a.32476.
  29. Romaniello R, Marelli S, Giorda R, et al. Clinical characterization, genetics, and long-term follow-up of a large cohort of patients With agenesis of the corpus callosum. J Child Neurol 2017;32(1):60–71. DOI: 10.1177/0883073816664668.
  30. Shu T, Li Y, Keller A, et al. The glial sling is a migratory population of developing neurons. Development 2003;130(13):2929–2937. DOI: 10.1242/dev.00514.
  31. Ren T, Anderson A, Shen WB, et al. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 2006;288(2):191–204. DOI: 10.1002/ar.a.20282.
  32. Nishikimi M, Oishi K, Nakajima K. Axon guidance mechanisms for establishment of callosal connections. Neural Plast 2013;2013:149060. DOI: 10.1155/2013/149060.
  33. Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: Usual and novel guideposts. Front Neurosci 2015;9:248. DOI: 10.3389/fnins.2015.00248.
  34. Paul LK. Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord 2011;3(1):3–27. DOI: 10.1007/s11689-010-9059-y.
  35. Niwa T, de Vries LS, Manten GT, et al. Interhemispheric lipoma, callosal anomaly, and malformations of cortical development: A case series. Neuropediatrics 2016;47(2):115–118. DOI: 10.1055/s-0035-1570752.
  36. Santo S, D'Antonio F, Homfray T, et al. Counseling in fetal medicine: Agenesis of the corpus callosum. Ultrasound Obstet Gynecol 2012;40(5):513–521. DOI: 10.1002/uog.12315.
  37. Hanna RM, Marsh SE, Swistun D, et al. Distinguishing 3 classes of corpus callosal abnormalities in consanguineous families. Neurology 2011;76(4):373–382. DOI: 10.1212/WNL.0b013e318208f492.
  38. de Oliveira AM, Paulino MV, Vieira APF, et al. Imaging patterns of toxic and metabolic brain disorders. Radiographics 2019;39(6):1672–1695. DOI: 10.1148/rg.2019190016.
  39. Byrd SE, Radkowski MA, Flannery A, et al. The clinical and radiological evaluation of absence of the corpus callosum. Eur J Radiol 1990;10(1):65–73. DOI: 10.1016/0720-048x(90)90091-o.
  40. Barkovich AJ, Norman D. Anomalies of the corpus callosum: Correlation with further anomalies of the brain. AJR Am J Roentgenol 1988;151(1):171–179. DOI: 10.2214/ajr.151.1.171.
  41. Severino M, Geraldo AF, Utz N, et al. Definitions and classification of malformations of cortical development: Practical guidelines. Brain 2020;143(10):2874–2894. DOI: 10.1093/brain/awaa174.
  42. Tang PH, Bartha AI, Norton ME, et al. Agenesis of the corpus callosum: An MR imaging analysis of associated abnormalities in the fetus. AJNR Am J Neuroradiol 2009;30(2):257–263. DOI: 10.3174/ajnr.A1331.
  43. Van Essen DC. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 1997;385(6614):313–318. DOI: 10.1038/385313a0.
  44. Sperry RW. Cerebral organization and behavior: The split brain behaves in many respects like two separate brains, providing new research possibilities. Science 1961;133(3466):1749–1757. DOI: 10.1126/science.133.3466.1749.
  45. Abreu-Villaca Y, Silva WC, Manhaes AC, et al. The effect of corpus callosum agenesis on neocortical thickness and neuronal density of BALB/cCF mice. Brain Res Bull 2002;58(4):411–416. DOI: 10.1016/s0361-9230(02)00812-2.
  46. Ahmed G, Shinmyo Y. Multiple functions of Draxin/Netrin-1 signaling in the development of neural circuits in the spinal cord and the brain. Front Neuroanat 2021;15:766911. DOI: 10.3389/fnana.2021. 766911.
  47. Al-Hashim AH, Blaser S, Raybaud C, et al. Corpus callosum abnormalities: Neuroradiological and clinical correlations. Dev Med Child Neurol 2016;58(5):475–484. DOI: 10.1111/dmcn.12978.
  48. Andrews W, Liapi A, Plachez C, et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 2006;133(11):2243–2252. DOI: 10.1242/dev.02379.
  49. Alcamo EA, Chirivella L, Dautzenberg M, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 2008;57(3):364–377. DOI: 10.1016/j.neuron.2007.12.012.
  50. Aughton DJ, Sloan CT, Milad MP, et al. Nasopharyngeal teratoma (‘hairy polyp’), Dandy-Walker malformation, diaphragmatic hernia, and other anomalies in a female infant. J Med Genet 1990;27(12): 788–790. DOI: 10.1136/jmg.27.12.788.
  51. Bagri A, Marin O, Plump AS, et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 2002;33(2):233–248. DOI: 10.1016/s0896-6273(02)00561-5.
  52. Barkovich AJ, Simon EM, Walsh CA. Callosal agenesis with cyst: A better understanding and new classification. Neurology 2001;56(2):220–227. DOI: 10.1212/wnl.56.2.220.
  53. Barth PG, Uylings HB, Stam FC. Interhemispheral neuroepithelial (glio-ependymal) cysts, associated with agenesis of the corpus callosum and neocortical maldevelopment. A case study. Childs Brain 1984;11(5):312–319. DOI: 10.1159/000120193.
  54. Benadiba C, Magnani D, Niquille M, et al. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. PLoS Genet 2012;8(3):e1002606. DOI: 10.1371/journal.pgen.1002606.
  55. Benezit A, Hertz-Pannier L, Dehaene-Lambertz G, et al. Organising white matter in a brain without corpus callosum fibres. Cortex 2015;63:155–171. DOI: 10.1016/j.cortex.2014.08.022.
  56. Bilasy SE, Satoh T, Terashima T, et al. RA-GEF-1 (Rapgef2) is essential for proper development of the midline commissures. Neurosci Res 2011;71(3):200–209. DOI: 10.1016/j.neures.2011.08.004.
  57. Britanova O, de Juan Romero C, Cheung A, et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008;57(3):378–392. DOI: 10.1016/j.neuron.2007.12.028.
  58. Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev 2018;92:104–127. DOI: 10.1016/j.neubiorev.2018.05.008.
  59. Cachay R, Schwalb A, Watanabe T, et al. Case report: Multiorgan involvement with congenital Zika syndrome. Am J Trop Med Hyg 2020;103(4):1656–1659. DOI: 10.4269/ajtmh.20-0421.
  60. Curnes JT, Laster DW, Koubek TD, et al. MRI of corpus callosal syndromes. AJNR Am J Neuroradiol 1986;7(4):617–622. PMID: 3088939.
  61. Richards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 2004;66(4):276–289. DOI: 10.1111/j.1399-0004.2004.00354.x.
  62. Leventer RJ, Guerrini R, Dobyns WB. Malformations of cortical development and epilepsy. Dialogues Clin Neurosci 2008;10(1):47–62. DOI: 10.31887/DCNS.2008.10.1/rjleventer.
  63. Ren T, Zhang J, Plachez C, et al. Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice. J Neurosci 2007;27(39):10345–10349. DOI: 10.1523/JNEUROSCI.2787-07.2007.
  64. Utsunomiya H, Yamashita S, Takano K, et al. Arrangement of fiber tracts forming Probst bundle in complete callosal agenesis: Report of two cases with an evaluation by diffusion tensor tractography. Acta Radiol 2006;47(10):1063–1066. DOI: 10.1080/02841850600930025.
  65. Revanna KG, Rajadurai VS, Chandran S. Agenesis of the corpus callosum with interhemispheric cyst: Clinical implications and outcome. BMJ Case Rep 2018;11(1):bcr2018227366. DOI: 10.1136/bcr-2018-227366.
  66. Aggarwal N, Gehlot KB, Kumar SD, et al. Frontal subcutaneous lipoma associated with interhemispheric lipoma, lipomeningocele, and corpus callosal dysgenesis in a young adult: CT and MRI findings. Indian J Radiol Imaging 2018;28(1):22–26. DOI: 10.4103/ijri.IJRI_280_17.
  67. Edwards TJ, Fenlon LR, Dean RJ, et al. Altered structural connectivity networks in a mouse model of complete and partial dysgenesis of the corpus callosum. Neuroimage 2020;217:116868. DOI: 10.1016/j.neuroimage.2020.116868.
  68. Herbet G, Zemmoura I, Duffau H. Functional anatomy of the inferior longitudinal fasciculus: From historical reports to current hypotheses. Front Neuroanat 2018;12:77. DOI: 10.3389/fnana.2018.00077.
  69. Conner AK, Briggs RG, Sali G, et al. A connectomic Atlas of the human cerebrum-chapter 13: Tractographic description of the inferior fronto-occipital fasciculus. Oper Neurosurg (Hagerstown) 2018;15(suppl_1):S436–S443. DOI: 10.1093/ons/opy267.
  70. Bao Y, Wang Y, Wang W, et al. The superior fronto-occipital fasciculus in the human brain revealed by diffusion spectrum imaging tractography: An anatomical reality or a methodological artifact? Front Neuroanat 2017;11:119. DOI: 10.3389/fnana.2017.00119.
  71. Volpe P, Campobasso G, De Robertis V, et al. Disorders of prosencephalic development. Prenat Diagn 2009;29(4):340–354. DOI: 10.1002/pd.2208.
  72. Kazi AZ, Joshi PC, Kelkar AB, et al. MRI evaluation of pathologies affecting the corpus callosum: A pictorial essay. Indian J Radiol Imaging 2013;23(4):321–332. DOI: 10.4103/0971-3026.125604.
  73. O'Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 2011;22(2):185–196, viii. DOI: 10.1016/
  74. Zhou J, Wen Y, She L, et al. Axon position within the corpus callosum determines contralateral cortical projection. Proc Natl Acad Sci U S A 2013;110(29):E2714–E2723. DOI: 10.1073/pnas.1310233110.
  75. Lodato S, Rouaux C, Quast KB, et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 2011;69(4):763–779. DOI: 10.1016/j.neuron.2011.01.015.
  76. Fritzsch B, Muirhead KA, Feng F, et al. Diffusion and imaging properties of three new lipophilic tracers, NeuroVue Maroon, NeuroVue Red and NeuroVue Green and their use for double and triple labeling of neuronal profile. Brain Res Bull 2005;66(3):249–258. DOI: 10.1016/j.brainresbull.2005.05.016.
  77. Portera-Cailliau C, Weimer RM, De Paola V, et al. Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 2005;3(8):e272. DOI: 10.1371/journal.pbio.0030272.
  78. Company V, Murcia-Ramon R, Andreu-Cervera A, et al. Adhesion molecule Amigo2 is involved in the fasciculation process of the fasciculus retroflexus. Dev Dyn 2022;251(11):1834–1847. DOI: 10.1002/dvdy.513.
  79. Huang J, Friedland RP, Auchus AP. Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: Preliminary evidence of axonal degeneration in the temporal lobe. AJNR Am J Neuroradiol 2007;28(10):1943–1948. DOI: 10.3174/ajnr.A0700.
  80. Niquille M, Garel S, Mann F, et al. Transient neuronal populations are required to guide callosal axons: A role for semaphorin 3C. PLoS Biol 2009;7(10):e1000230. DOI: 10.1371/journal.pbio.1000230.
  81. Labadi B, Beke AM. Mental state understanding in children with agenesis of the corpus callosum. Front Psychol 2017;8:94. DOI: 10.3389/fpsyg.2017.00094.
  82. Szczupak D, Liu C, Yen CCC, et al. Long-distance aberrant heterotopic connectivity in a mouse strain with a high incidence of callosal anomalies. Neuroimage 2020;217:116875. DOI: 10.1016/j.neuroimage.2020.116875.
  83. Magee KR, Olson RN. The effect of absence of the corpus callosum on the position of the hippocampus and on the formation of Probst's bundle. J Comp Neurol 1961;117:371–382. DOI: 10.1002/cne.901170308.
  84. Lent R. Neuroanatomical effects of neonatal transection of the corpus callosum in hamsters. J Comp Neurol 1984;223(4):548–555. DOI: 10.1002/cne.902230407.
  85. Ozaki HS, Wahlsten D. Cortical axon trajectories and growth cone morphologies in fetuses of acallosal mouse strains. J Comp Neurol 1993;336(4):595–604. DOI: 10.1002/cne.903360411.
  86. Ozaki HS, Murakami TH, Toyoshima T, et al. The fibers which leave the Probst's longitudinal bundle seen in the brain of an acallosal mouse: A study with the horseradish peroxidase technique. Brain Res 1987;400(2):239–246. DOI: 10.1016/0006-8993(87)90623-8.
  87. Ozaki HS, Iwahashi K, Shimada M. Ipsilateral corticocortical projections of fibers which course within Probst's longitudinal bundle seen in the brains of mice with congenital absence of the corpus callosum: A study with the horseradish peroxidase technique. Brain Res 1989;493(1):66–73. DOI: 10.1016/0006-8993(89)91000-7.
  88. Edwards TJ, Sherr EH, Barkovich AJ, et al. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 2014;137(Pt 6):1579–1613. DOI: 10.1093/brain/awt358.
  89. Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023;17:1226181. DOI: 10.3389/fnins.2023.1226181.
  90. Pavone P, Striano P, Cacciaguerra G, et al. Case report: Structural brain abnormalities in TUBA1A-tubulinopathies: A narrative review. Front Pediatr 2023;11:1210272. DOI: 10.3389/fped.2023.1210272.
  91. Shiohama T, McDavid J, Levman J, et al. Quantitative brain morphological analysis in CHARGE syndrome. Neuroimage Clin 2019;23:101866. DOI: 10.1016/j.nicl.2019.101866.
  92. Morcom L, Edwards TJ, Rider E, et al. DRAXIN regulates interhemispheric fissure remodelling to influence the extent of corpus callosum formation. Elife 2021;10. DOI: 10.7554/eLife.61618.
  93. Hinkley LB, Marco EJ, Findlay AM, et al. The role of corpus callosum development in functional connectivity and cognitive processing. PLoS One 2012;7(8):e39804. DOI: 10.1371/journal.pone.0039804.
  94. Tully HM, Dobyns WB. Infantile hydrocephalus: A review of epidemiology, classification and causes. Eur J Med Genet 2014;57(8):359–368. DOI: 10.1016/j.ejmg.2014.06.002.
  95. Leliefeld PH, Gooskens RH, Tulleken CA, et al. Noninvasive detection of the distinction between progressive and compensated hydrocephalus in infants: Is it possible? J Neurosurg Pediatr 2010;5(6):562–568. DOI: 10.3171/2010.2.PEDS09309.
  96. Hurni Y, Poretti A, Schneider J, et al. Arrested Hydrocephalus in Childhood: Case Series and Review of the Literature. Neuropediatrics 2018;49(5):302–309. DOI: 10.1055/s-0038-1660854.
  97. Bartha-Doering L, Schwartz E, Kollndorfer K, et al. Effect of corpus callosum agenesis on the language network in children and adolescents. Brain Struct Funct 2021;226(3):701–713. DOI: 10.1007/s00429-020-02203-6.
  98. Tantik Pak A, Nacar Dogan S, Sengul Y. Structural integrity of corpus callosum in patients with migraine: A diffusion tensor imaging study. Acta Neurol Belg 2023;123(2):385–390. DOI: 10.1007/s13760-021-01863-3.
  99. Guadarrama-Ortiz P, Choreno-Parra JA, de la Rosa-Arredondo T. Isolated agenesis of the corpus callosum and normal general intelligence development during postnatal life: A case report and review of the literature. J Med Case Rep 2020;14(1):28. DOI: 10.1186/s13256-020-2359-2.
  100. Garavelli L, Mainardi PC. Mowat-Wilson syndrome. Orphanet J Rare Dis 2007;2:42. DOI: 10.1186/1750-1172-2-42.
  101. Ha TT, Burgess R, Newman M, et al. Aicardi syndrome is a genetically heterogeneous disorder. Genes (Basel) 2023;14(8). DOI: 10.3390/genes14081565.
  102. Gauvreau C, Brisson JD, Dupré N. Hereditary motor and sensory neuropathy with agenesis of the corpus callosum. In: Adam MP, Feldman J, Mirzaa GM, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 2006.
  103. Bonneau D, Toutain A, Laquerriere A, et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): Clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 2002;51(3):340–349. DOI: 10.1002/ana.10119.
  104. Christoff RR, Quintanilha JH, Ferreira RO, et al. Congenital Zika virus infection impairs corpus callosum development. Viruses 2023;15(12). DOI: 10.3390/v15122336.
  105. Yoon KJ, Song G, Qian X, et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 2017;21(3):349–358e6. DOI: 10.1016/j.stem.2017.07.014.
  106. Hofman J, Hutny M, Sztuba K, et al. Corpus Callosum Agenesis: An Insight into the etiology and Spectrum of symptoms. Brain Sci 2020;10(9). DOI: 10.3390/brainsci10090625.
  107. Tyszka JM, Kennedy DP, Adolphs R, et al. Intact bilateral resting-state networks in the absence of the corpus callosum. J Neurosci 2011;31(42):15154–15162. DOI: 10.1523/JNEUROSCI.1453-11. 2011.
  108. Kolb B, Gibb R. Brain plasticity and behaviour in the developing brain. J Can Acad Child Adolesc Psychiatry 2011;20(4):265–276. PMID: 22114608.
  109. Schulte T, Muller-Oehring EM. Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychol Rev 2010;20(2):174–190. DOI: 10.1007/s11065-010-9130-1.
  110. Paul LK, Brown WS, Adolphs R, et al. Agenesis of the corpus callosum: Genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007;8(4):287–299. DOI: 10.1038/nrn2107.
  111. Dalton MA, D'Souza A, Lv J, et al. New insights into anatomical connectivity along the anterior-posterior axis of the human hippocampus using in vivo quantitative fibre tracking. Elife 2022;11. DOI: 10.7554/eLife.76143.
  112. Roland JL, Snyder AZ, Hacker CD, et al. On the role of the corpus callosum in interhemispheric functional connectivity in humans. Proc Natl Acad Sci U S A 2017;114(50):13278–13283. DOI: 10.1073/pnas.1707050114.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.