Newborn

Register      Login

VOLUME 3 , ISSUE 2 ( April-June, 2024 ) > List of Articles

REVIEW ARTICLE

Intracranial Hemorrhage in Neonates: Causes, Diagnosis, and Management

Ogtay Huseynov, Thierry AGM Huisman, Ahmed S Hassan, Roya Huseynova

Keywords : Epidural, Germinal matrix vasculature, Hemorrhagic stroke, Infant, Infection, Intraventricular, Newborn, Parenchymal, Subdural, Subarachnoid

Citation Information : Huseynov O, Huisman TA, Hassan AS, Huseynova R. Intracranial Hemorrhage in Neonates: Causes, Diagnosis, and Management. 2024; 3 (2):111-123.

DOI: 10.5005/jp-journals-11002-0097

License: CC BY-NC 4.0

Published Online: 21-06-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

The incidence of symptomatic intracranial hemorrhage (ICH) in newborn infants may be up to 1:2,000 spontaneous births, 1:850 vacuum extractions, and 1:650 forceps-assisted deliveries. Intracranial hemorrhage is frequently associated with adverse neurodevelopmental outcomes in neonates as the perinatal period is a crucial window for brain development. In term neonates, ICH usually occurs during labor due to mechanical injury. On the other hand, preterm infants frequently develop ICH due to hemodynamic instability and fragility of the germinal matrix (GM) vasculature. Based on the location of the hemorrhage, ICH is usually described as epidural, subdural, subarachnoid, intraventricular, and parenchymal bleeds. The cause of neonatal ICH is multifactorial and includes hemorrhage related to prematurity, hemorrhagic stroke, infection, vascular malformations, bleeding disorders, and genetic causes. Iatrogenic coagulopathy during cardiopulmonary bypass/extracorporeal membrane oxygenation (ECMO) can also be a cause. Most patients can be managed without surgical intervention. Some symptomatic infants may need neurosurgical procedure(s) such as external ventricular drainage and/or ventriculoperitoneal shunt(s). The neurodevelopmental outcomes vary according to the maturation of the brain, etiology, place, and extent of the hemorrhage. Clinically concerning complications may include developmental delay, leukomalacia, convulsion, cerebral palsy, and other neurological disorders. In this article, we have reviewed the types, etiology, severity, and clinical outcomes of neonatal ICH.


PDF Share
  1. Tan AP, Svrckova P, Cowan F, et al. Intracranial hemorrhage in neonates: A review of etiologies, patterns and predicted clinical outcomes. Eur J Paediatr Neurol 2018;22(4):690–717. DOI: 10.1016/j.ejpn.2018.04.008.
  2. O'Shea TM, Allred EN, Kuban KC, et al. Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J Child Neurol 2012;27(1):22–29. DOI: 10.1177/0883073811424462.
  3. Hong HS, Lee JY. Intracranial hemorrhage in term neonates. Childs Nerv Syst 2018;34(6):1135–1143. DOI: 10.1007/s00381-018-3788-8.
  4. Ballabh P. Intraventricular hemorrhage in premature infants: Mechanism of disease. Pediatr Res 2010;67(1):1–8. DOI: 10.1203/PDR.0b013e3181c1b176.
  5. Heit JJ, Iv M, Wintermark M. Imaging of Intracranial Hemorrhage. J Stroke 2017;19(1):11–27. DOI: 10.5853/jos.2016.00563.
  6. Ment LR, Aden U, Lin A, et al. Gene-environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatr Res 2014;75(1–2):241–250. DOI: 10.1038/pr.2013.195.
  7. Doymaz S, Zinger M, Sweberg T. Risk factors associated with intracranial hemorrhage in neonates with persistent pulmonary hypertension on ECMO. J Intensive Care 2015;3(1):6. DOI: 10.1186/s40560-015-0071-x.
  8. Kramer MS, Berg C, Abenhaim H, et al. Incidence, risk factors, and temporal trends in severe postpartum hemorrhage. Am J Obstet Gynecol 2013;209(5):449 e1–7. DOI: 10.1016/j.ajog.2013.07.007.
  9. Cortesi V, Raffaeli G, Amelio GS, et al. Hemostasis in neonatal ECMO. Front Pediatr 2022;10:988681. DOI: 10.3389/fped.2022.988681.
  10. Shah T, Leurgans SE, Mehta RI, et al. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J Exp Med 2023;220(2). DOI: 10.1084/jem.20220618.
  11. Albayram MS, Smith G, Tufan F, et al. Frequency, extent, and correlates of superficial siderosis and ependymal siderosis in premature infants with germinal matrix hemorrhage: An SWI study. AJNR Am J Neuroradiol 2020;41(2):331–337. DOI: 10.3174/ajnr.A6371.
  12. Sandberg DI, Lamberti-Pasculli M, Drake JM, et al. Spontaneous intraparenchymal hemorrhage in full-term neonates. Neurosurgery 2001;48(5):1042–1048; discussion 8–9. DOI: 10.1097/00006123-200105000-00015.
  13. Huisman TA. Fetal magnetic resonance imaging of the brain: Is ventriculomegaly the tip of the syndromal iceberg? Semin Ultrasound CT MR 2011;32(6):491–509. DOI: 10.1053/j.sult.2011.08.002.
  14. Strahle J, Garton HJ, Maher CO, et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 2012;3(Suppl 1):25–38. DOI: 10.1007/s12975-012-0182-9.
  15. Ko JK, Cha SH, Choi BK, et al. Hemorrhage rates associated with two methods of ventriculostomy: External ventricular drainage vs. ventriculoperitoneal shunt procedure. Neurol Med Chir (Tokyo) 2014;54(7):545–551. DOI: 10.2176/nmc.oa.2013-0178.
  16. Lekic T, Klebe D, Poblete R, et al. Neonatal brain hemorrhage (NBH) of prematurity: Translational mechanisms of the vascular-neural network. Curr Med Chem 2015;22(10):1214–1238. DOI: 10.2174/0929867322666150114152421.
  17. Herzberg EM, Machie M, Glass HC, et al. Seizure severity and treatment response in newborn infants with seizures attributed to intracranial hemorrhage. J Pediatr 2022;242:121–128 e1. DOI: 10.1016/j.jpeds.2021.11.012.
  18. Cheshire EC, Malcomson RDG, Sun P, et al. A systematic autopsy survey of human infant bridging veins. Int J Legal Med 2018;132(2):449–461. DOI: 10.1007/s00414-017-1714-3.
  19. Huisman T, Phelps T, Bosemani T, et al. Parturitional injury of the head and neck. J Neuroimaging 2015;25(2):151–66. DOI: 10.1111/jon.12144.
  20. Gupta SN, Kechli AM, Kanamalla US. Intracranial hemorrhage in term newborns: Management and outcomes. Pediatr Neurol 2009;40(1): 1–12. DOI: 10.1016/j.pediatrneurol.2008.09.019.
  21. Whitby EH, Griffiths PD, Rutter S, et al. Frequency and natural history of subdural haemorrhages in babies and relation to obstetric factors. Lancet 2004;363(9412):846–851. DOI: 10.1016/S0140-6736(04) 15730-9.
  22. Khairat A, Waseem M. Epidural Hematoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 30085524
  23. Ou-Yang MC, Huang CB, Huang HC, et al. Clinical manifestations of symptomatic intracranial hemorrhage in term neonates: 18 years of experience in a medical center. Pediatr Neonatol 2010;51(4):208–213. DOI: 10.1016/S1875-9572(10)60040-X.
  24. Brouwer AJ, Groenendaal F, Koopman C, et al. Intracranial hemorrhage in full-term newborns: A hospital-based cohort study. Neuroradiology 2010;52(6):567–576. DOI: 10.1007/s00234-010- 0698-1.
  25. Ucer M, Tacyildiz AE, Aydin I, et al. Observational case analysis of neonates with large cephalohematoma. Cureus 2021;13(4):e14415. DOI: 10.7759/cureus.14415.
  26. Chaturvedi A, Chaturvedi A, Stanescu AL, et al. Mechanical birth-related trauma to the neonate: An imaging perspective. Insights Imaging 2018;9(1):103–118. DOI: 10.1007/s13244-017-0586-x.
  27. Collins KA, Popek E. Birth injury: Birth asphyxia and birth trauma. Acad Forensic Pathol 2018;8(4):788–864. DOI: 10.1177/1925362118821468.
  28. Araki T, Yokota H, Morita A. Pediatric traumatic brain injury: Characteristic features, diagnosis, and management. Neurol Med Chir (Tokyo) 2017;57(2):82–93. DOI: 10.2176/nmc.ra.2016-0191.
  29. Chong S. Head injury during childbirth. J Korean Neurosurg Soc 2022;65(3):342–347. DOI: 10.3340/jkns.2022.0045.
  30. Kumpulainen V, Lehtola SJ, Tuulari JJ, et al. Prevalence and risk factors of incidental findings in brain MRIS of healthy neonates-the FinnBrain birth cohort study. Front Neurol 2019;10:1347. DOI: 10.3389/fneur.2019.01347.
  31. Hasan D, Nikoubashman O, Pjontek R, et al. MRI appearance of chronic subdural hematoma. Front Neurol 2022;13:872664. DOI: 10.3389/fneur.2022.872664.
  32. Engelborghs S, Niemantsverdriet E, Struyfs H, et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement (Amst) 2017;8:111–126. DOI: 10.1016/j.dadm.2017.04.007.
  33. Rooks VJ, Eaton JP, Ruess L, et al. Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants. AJNR Am J Neuroradiol 2008;29(6):1082–1089. DOI: 10.3174/ajnr.A1004.
  34. Copley PC, Dean B, Davidson AL, et al. Spontaneous subdural haematoma in a neonate requiring urgent surgical evacuation. Acta Neurochir (Wien) 2021;163(6):1743–1749. DOI: 10.1007/s00701-020-04570-9.
  35. Zahl SM, Wester K, Gabaeff S. Examining perinatal subdural haematoma as an aetiology of extra-axial hygroma and chronic subdural haematoma. Acta Paediatr 2020;109(4):659–666. DOI: 10.1111/apa.15072.
  36. Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 2019;4(37). DOI: 10.1126/sciimmunol.aav0492.
  37. Lacey DJ, Terplan K. Intraventricular hemorrhage in full-term neonates. Dev Med Child Neurol 1982;24(3):332–337. DOI: 10.1111/j.1469-8749.1982.tb13625.x.
  38. Chaplin ER, Jr., Goldstein GW, Norman D. Neonatal seizures, intracerebral hematoma, and subarachnoid hemorrhage in full-term infants. Pediatrics 1979;63(5):812–815.
  39. Sanicola HW, Stewart CE, Luther P, et al. Pathophysiology, management, and therapeutics in subarachnoid hemorrhage and delayed cerebral ischemia: An overview. Pathophysiology 2023;30(3):420–442. DOI: 10.3390/pathophysiology30030032.
  40. Samagh N, Bhagat H, Jangra K. Monitoring cerebral vasospasm: How much can we rely on transcranial Doppler. J Anaesthesiol Clin Pharmacol 2019;35(1):12–18. DOI: 10.4103/joacp.JOACP_192_17.
  41. Sorokan ST, Jefferies AL, Miller SP. Imaging the term neonatal brain. Paediatr Child Health 2018;23(5):322–328. DOI: 10.1093/pch/pxx161.
  42. Caro-Dominguez P, Lecacheux C, Hernandez-Herrera C, et al. Cranial ultrasound for beginners. Transl Pediatr 2021;10(4):1117–1137. DOI: 10.21037/tp-20-399.
  43. Cheng YC, Chen HC, Wu CH, et al. Magnetic Resonance angiography in the diagnosis of cerebral arteriovenous malformation and dural arteriovenous fistulas: Comparison of time-resolved magnetic resonance angiography and three dimensional time-of-flight magnetic resonance angiography. Iran J Radiol 2016;13(2):e19814. DOI: 10.5812/iranjradiol.19814.
  44. Soul JS. Acute symptomatic seizures in term neonates: Etiologies and treatments. Semin Fetal Neonatal Med 2018;23(3):183–190. DOI: 10.1016/j.siny.2018.02.002.
  45. Yum SK, Im SA, Seo YM, et al. Enlarged subarachnoid space on cranial ultrasound in preterm infants: Neurodevelopmental implication. Sci Rep 2019;9(1):19072. DOI: 10.1038/s41598-019-55604-x.
  46. Isola C, Evain JN, Francony G, et al. Cerebral vasospasm in children with subarachnoid hemorrhage: Frequency, diagnosis, and therapeutic management. Neurocrit Care 2022;36(3):868–875. DOI: 10.1007/s12028-021-01388-w.
  47. Tenny S, Thorell W. Intracranial Hemorrhage. Treasure Island (FL): StatPearls Publishing; 2024.
  48. Muller H, Beedgen B, Schenk JP, et al. Intracerebellar hemorrhage in premature infants: Sonographic detection and outcome. J Perinat Med 2007;35(1):67–70. DOI: 10.1515/JPM.2007.010.
  49. Kersbergen KJ, Groenendaal F, Benders MJ, et al. Neonatal cerebral sinovenous thrombosis: Neuroimaging and long-term follow-up. J Child Neurol 2011;26(9):1111–1120. DOI: 10.1177/08830738114 08090.
  50. Bruno CJ, Beslow LA, Witmer CM, et al. Haemorrhagic stroke in term and late preterm neonates. Arch Dis Child Fetal Neonatal Ed 2014;99(1):F48–F53. DOI: 10.1136/archdischild-2013-304068.
  51. Coviello C, Remaschi G, Becciani S, et al. Neonatal cerebellar hemorrhage and facial nerve palsy: An unusual association. AJP Rep 2020;10(3):e262–e265. DOI: 10.1055/s-0040-1715162.
  52. van der Heijden ME, Gill JS, Sillitoe RV. Abnormal cerebellar development in autism spectrum disorders. Dev Neurosci 2021;43 (3–4):181-90. DOI: 10.1159/000515189.
  53. Hortensius LM, Dijkshoorn ABC, Ecury-Goossen GM, et al. Neurodevelopmental consequences of preterm isolated cerebellar hemorrhage: A systematic review. Pediatrics 2018;142(5). DOI: 10.1542/peds.2018-0609.
  54. Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol 2014;41(1):47–67. DOI: 10.1016/j.clp.2013. 09.007.
  55. Bowie JD, Kirks DR, Rosenberg ER, et al. Caudothalamic groove: Value in identification of germinal matrix hemorrhage by sonography in preterm neonates. AJR Am J Roentgenol 1983;141(6):1317–1320. DOI: 10.2214/ajr.141.6.1317.
  56. Parodi A, Govaert P, Horsch S, et al. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res 2020;87(Suppl 1):13–24. DOI: 10.1038/s41390-020-0780-2.
  57. Egesa WI, Odoch S, Odong RJ, et al. Germinal matrix-intraventricular hemorrhage: A tale of preterm infants. Int J Pediatr 2021;2021:6622598. DOI: 10.1155/2021/6622598.
  58. Brouwer AJ, Groenendaal F, Benders MJ, et al. Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology 2014;106(4):296–303. DOI: 10.1159/000365127.
  59. Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 2010;126(3):443–456. DOI: 10.1542/peds.2009-2959.
  60. Siffel C, Kistler KD, Sarda SP. Global incidence of intraventricular hemorrhage among extremely preterm infants: A systematic literature review. J Perinat Med 2021;49(9):1017–1026. DOI: 10.1515/jpm-2020-0331.
  61. Alotaibi WSM, Alsaif NS, Ahmed IA, et al. Reduction of severe intraventricular hemorrhage, a tertiary single-center experience: Incidence trends, associated risk factors, and hospital policy. Childs Nerv Syst 2020;36(12):2971–2979. DOI: 10.1007/s00381-020-04621-7.
  62. Bassan H. Intracranial hemorrhage in the preterm infant: Understanding it, preventing it. Clin Perinatol 2009;36(4):737–762, v. DOI: 10.1016/j.clp.2009.07.014.
  63. Atienza-Navarro I, Alves-Martinez P, Lubian-Lopez S, et al. Germinal matrix-intraventricular hemorrhage of the preterm newborn and preclinical models: Inflammatory considerations. Int J Mol Sci 2020;21(21). DOI: 10.3390/ijms21218343.
  64. Ballabh P, de Vries LS. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021;17(4):199–214. DOI: 10.1038/s41582-020-00447-8.
  65. Inder TE, Perlman JM, Volpe JJ. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. In: Volpe JJ, Darras BT, du Plessis AJ, et al. (Eds). Volpe's Neurology of the Newborn, 6th edition. Philadelphia, PA: Elsevier; 2018. pp. 637–698.e21.
  66. Mukerji A, Shah V, Shah PS. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: A meta-analysis. Pediatrics 2015;136(6):1132–1143. DOI: 10.1542/peds.2015-0944.
  67. Starr R, De Jesus O, Shah SD, et al. Periventricular and Intraventricular Hemorrhage. Treasure Island (FL): StatPearls Publishing; 2024.
  68. Dammann O, Leviton A. Inflammatory brain damage in preterm newborns–dry numbers, wet lab, and causal inferences. Early Hum Dev 2004;79(1):1–15. DOI: 10.1016/j.earlhumdev.2004.04.009.
  69. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4(7):499–511. DOI: 10.1038/nri1391.
  70. Fukushi J, Ono M, Morikawa W, et al. The activity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J Immunol 2000;165(5):2818–2823. DOI: 10.4049/jimmunol.165.5.2818.
  71. da Fonseca AC, Matias D, Garcia C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014;8:362. DOI: 10.3389/fncel.2014.00362.
  72. Folkerth RD, Haynes RL, Borenstein NS, et al. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol 2004;63(9):990–999. DOI: 10.1093/jnen/63.9.990.
  73. Possel H, Noack H, Putzke J, et al. Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: In vitro and in vivo studies. Glia 2000;32(1):51–59. DOI: 10.1002/1098-1136(200010)32:1<51::aid-glia50>3.0.co;2-4.
  74. Rezaie P, Dean A, Male D, et al. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 2005;15(7):938–949. DOI: 10.1093/cercor/bhh194.
  75. Whitelaw A. Core concepts: Intraventricular hemorrhage neoreviews 2011;12(2):e94–e101. DOI: 10.1542/neo.12-2-e94.
  76. Coskun Y, Isik S, Bayram T, et al. A clinical scoring system to predict the development of intraventricular hemorrhage (IVH) in premature infants. Childs Nerv Syst 2018;34(1):129–136. DOI: 10.1007/s00381-017-3610-z.
  77. Kenny JD, Garcia-Prats JA, Hilliard JL, et al. Hypercarbia at birth: A possible role in the pathogenesis of intraventricular hemorrhage. Pediatrics 1978;62(4):465–467. PMID: 30936.
  78. Beltempo M, Wintermark P, Lemyre B, et al. Predictors of severe neurologic injury on ultrasound scan of the head and risk factor-based screening for infants born preterm. J Pediatr 2019;214:27–33 e3. DOI: 10.1016/j.jpeds.2019.06.065.
  79. Bashir RA, Vayalthrikkovil S, Espinoza L, et al. Prevalence and characteristics of intracranial hemorrhages in neonates with hypoxic ischemic encephalopathy. Am J Perinatol 2018;35(7):676–681. DOI: 10.1055/s-0037-1608927.
  80. Tarantino MD, Gupta SL, Brusky RM. The incidence and outcome of intracranial haemorrhage in newborns with haemophilia: Analysis of the Nationwide Inpatient Sample database. Haemophilia 2007;13(4):380–382. DOI: 10.1111/j.1365-2516.2007.01492.x.
  81. Wu YW, Hamrick SE, Miller SP, et al. Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 2003;54(1):123–126. DOI: 10.1002/ana.10619.
  82. Meuwissen ME, Halley DJ, Smit LS, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: Clinical data on 13 newly identified families and a review of the literature. Genet Med 2015;17(11):843–853. DOI: 10.1038/gim.2014.210.
  83. Rhee CJ, da Costa CS, Austin T, et al. Neonatal cerebrovascular autoregulation. Pediatr Res 2018;84(5):602–610. DOI: 10.1038/s41390-018-0141-6.
  84. Vesoulis ZA, Mathur AM. Cerebral autoregulation, brain injury, and the transitioning premature infant. Front Pediatr 2017;5:64. DOI: 10.3389/fped.2017.00064.
  85. Mullaart RA, Hopman JC, Rotteveel JJ, et al. Cerebral blood flow fluctuation in neonatal respiratory distress and periventricular haemorrhage. Early Hum Dev 1994;37(3):179–185. DOI: 10.1016/0378-3782(94)90077-9.
  86. Rios DR, Bhattacharya S, Levy PT, et al. Circulatory insufficiency and hypotension related to the ductus arteriosus in neonates. Front Pediatr 2018;6:62. DOI: 10.3389/fped.2018.00062.
  87. Lu H, Wang Q, Lu J, et al. Risk factors for intraventricular hemorrhage in preterm infants born at 34 weeks of gestation or less following preterm premature rupture of membranes. J Stroke Cerebrovasc Dis 2016;25(4):807–812. DOI: 10.1016/j.jstrokecerebrovasdis. 2015.12.011.
  88. Volpe JJ. Intracranial hemorrhage: Germinal matrix –intraventricular hemorrhage of the premature infant. In: Volpe JJ (Ed). Neurology of the Newborn, 5th edition. Philadelphia: Elsevier; 2008. pp. 517–588.
  89. Kaiser JR, Gauss CH, Williams DK. Tracheal suctioning is associated with prolonged disturbances of cerebral hemodynamics in very low birth weight infants. J Perinatol 2008;28(1):34–41. DOI: 10.1038/sj.jp.7211848.
  90. Vesoulis ZA, Flower AA, Zanelli S, et al. Blood pressure extremes and severe IVH in preterm infants. Pediatr Res 2020;87(1):69–73. DOI: 10.1038/s41390-019-0585-3.
  91. Soul JS, Hammer PE, Tsuji M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 2007;61(4):467–473. DOI: 10.1203/pdr.0b013e31803237f6.
  92. Bada HS, Korones SB, Perry EH, et al. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr 1990;117(4):607–614. DOI: 10.1016/s0022-3476(05)80700-0.
  93. Goldberg RN, Chung D, Goldman SL, et al. The association of rapid volume expansion and intraventricular hemorrhage in the preterm infant. J Pediatr 1980;96(6):1060–1063. DOI: 10.1016/s0022-3476(80)80642-1.
  94. Riera J, Cabanas F, Serrano JJ, et al. New time-frequency method for cerebral autoregulation in newborns: Predictive capacity for clinical outcomes. J Pediatr 2014;165(5):897–902.e1. DOI: 10.1016/j.jpeds.2014.06.008.
  95. Erickson SJ, Grauaug A, Gurrin L, et al. Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health 2002;38(6): 560–562. DOI: 10.1046/j.1440-1754.2002.00041.x.
  96. Fabres J, Carlo WA, Phillips V, et al. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 2007;119(2):299–305. DOI: 10.1542/peds.2006-2434.
  97. Apeksha Reddy P, Sreenivasulu H, Shokrolahi M, et al. Navigating the complexities of intraventricular hemorrhage in preterm infants: An updated review. Cureus 2023;15(5):e38985. DOI: 10.7759/cureus.38985.
  98. Lupton BA, Hill A, Whitfield MF, et al. Reduced platelet count as a risk factor for intraventricular hemorrhage. Am J Dis Child 1988;142(11):1222–1224. DOI: 10.1001/archpedi.1988.02150110100029.
  99. Bolat F, Kilic SC, Oflaz MB, et al. The prevalence and outcomes of thrombocytopenia in a neonatal intensive care unit: A three-year report. Pediatr Hematol Oncol 2012;29(8):710–720. DOI: 10.3109/08880018.2012.725454.
  100. Yulandari I, Rundjan L, Kadim M, et al. The relationship between thrombocytopenia and intraventricular hemorrhage in neonates with gestational age <35 weeks. Paediatrica Indonesiana 2016;56(4): 242–250. DOI: 10.14238/pi56.4.2016.242-50.
  101. Brunner B, Hoeck M, Schermer E, et al. Patent ductus arteriosus, low platelets, cyclooxygenase inhibitors, and intraventricular hemorrhage in very low birth weight preterm infants. J Pediatr 2013;163(1):23–28. DOI: 10.1016/j.jpeds.2012.12.035.
  102. Bednarek FJ, Bean S, Barnard MR, et al. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res 2009;124(1):42–45. DOI: 10.1016/j.thromres.2008.10.004.
  103. Deschmann E, Sola-Visner M, Saxonhouse MA. Primary hemostasis in neonates with thrombocytopenia. J Pediatr 2014;164(1):167–172. DOI: 10.1016/j.jpeds.2013.08.037.
  104. Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, et al. The role of FV 1691G>A, FII 20210G>A mutations and MTHFR 677C>T; 1298A>C and 103G>T FXIII gene polymorphisms in pathogenesis of intraventricular hemorrhage in infants born before 32 weeks of gestation. Childs Nerv Syst 2017;33(7):1201–1208. DOI: 10.1007/s00381-017-3460-8.
  105. Ramenghi LA, Fumagalli M, Groppo M, et al. Germinal matrix hemorrhage: Intraventricular hemorrhage in very-low-birth-weight infants: the independent role of inherited thrombophilia. Stroke 2011;42(7):1889–1893. DOI: 10.1161/STROKEAHA.110.590455.
  106. Harteman JC, Groenendaal F, van Haastert IC, et al. Atypical timing and presentation of periventricular haemorrhagic infarction in preterm infants: The role of thrombophilia. Dev Med Child Neurol 2012;54(2):140–147. DOI: 10.1111/j.1469-8749.2011.04135.x.
  107. Chevallier M, Debillon T, Pierrat V, et al. Leading causes of preterm delivery as risk factors for intraventricular hemorrhage in very preterm infants: Results of the EPIPAGE 2 cohort study. Am J Obstet Gynecol 2017;216(5):518.e1–518.e12. DOI: 10.1016/j.ajog.2017.01.002.
  108. Kadri H, Mawla AA, Kazah J. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst 2006;22(9):1086–1090. DOI: 10.1007/s00381-006-0050-6.
  109. Patil V, Patil M, Sarawade S, et al. Assessment of Intraventricular Haemorrhage in Preterm Neonates Using Neurosonography through Anterior Fontanelle 2017 [27–31]. Available from: https://www.ijhsr.org/IJHSR_Vol.7_Issue.3_March2017/5.pdf.
  110. Takenouchi T, Perlman JM. Intraventricular hemorrhage and white matter injury in the preterm infant. In: Perlman JM, Polin RA (Eds.). Neurology, Neonatology Questions and Controversies, 1st edition. Philadelphia: Elsevier Saunders; 2012. pp. 27–45.
  111. Lim J, Hagen E. Reducing germinal matrix-intraventricular hemorrhage: Perinatal and delivery room factors. Neoreviews 2019;20(8):e452-e63. DOI: 10.1542/neo.20-8-e452.
  112. Maalouf EF, Duggan PJ, Counsell SJ, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001;107(4):719–727. DOI: 10.1542/peds.107.4.719.
  113. Counsell SJ, Maalouf EF, Rutherford MA, et al. Periventricular haemorrhagic infarct in a preterm neonate. Eur J Paediatr Neurol 1999;3(1):25–27. DOI: 10.1053/ejpn.1999.0175.
  114. Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92(4):529–534. DOI: 10.1016/s0022-3476(78)80282-0.
  115. Hand IL, Shellhaas RA, Milla SS, et al. Routine neuroimaging of the preterm brain. Pediatrics 2020;146(5). DOI: 10.1542/peds.2020-029082.
  116. Jones R, Clark EM, Broad K, Smit E. Outcome following preterm intraventricular haemorrhage – what to tell the parents. Paediatr Child Health 2018. DOI: 10.1016/j.paed.2018.07.005.
  117. Orman G, Benson JE, Kweldam CF, et al. Neonatal head ultrasonography today: A powerful imaging tool! J Neuroimaging 2015;25(1):31–55. DOI: 10.1111/jon.12108.
  118. Levene MI, Wigglesworth JS, Dubowitz V. Cerebral structure and intraventricular haemorrhage in the neonate: A real-time ultrasound study. Arch Dis Child 1981;56(6):416–24. DOI: 10.1136/adc.56.6.416.
  119. Guillot M, Chau V, Lemyre B, Canadian Paediatric Society FaNC. Routine imaging of the preterm neonatal brain: Canadian Pediatric Society; 2020. Available from: https://www.cps.ca/en/documents/position/routine-imaging-of-preterm-neonatal-brain.
  120. Ozek E, Kersin SG. Intraventricular hemorrhage in preterm babies. Turk Pediatri Ars 2020;55(3):215–221. DOI: 10.14744/TurkPediatriArs.2020.66742.
  121. Zhao LR, Lu SJ, Liu Q, et al. Impact of prolonged use of adjuvant tocolytics after cervical cerclage on late abortion and premature delivery. J Obstet Gynaecol 2023;43(1):2128997. DOI: 10.1080/01443615.2022.2128997.
  122. van Zijl MD, Koullali B, Mol BW, et al. Prevention of preterm delivery: Current challenges and future prospects. Int J Womens Health 2016;8:633–645. DOI: 10.2147/IJWH.S89317.
  123. Blaxter L, Yeo M, McNally D, et al. Neonatal head and torso vibration exposure during inter-hospital transfer. Proc Inst Mech Eng H 2017;231(2):99–113. DOI: 10.1177/0954411916680235.
  124. Fortmann I, Mertens L, Boeckel H, et al. A timely administration of antenatal steroids is highly protective against intraventricular hemorrhage: An observational multicenter cohort study of very low birth weight infants. Front Pediatr 2022;10:721355. DOI: 10.3389/fped.2022.721355.
  125. Chiruvolu A, Tolia VN, Qin H, et al. Effect of delayed cord clamping on very preterm infants. Am J Obstet Gynecol 2015;213(5):676.e1–7. DOI: 10.1016/j.ajog.2015.07.016.
  126. Stranak Z, Feyereislova S, Korcek P, et al. Placental transfusion and cardiovascular instability in the preterm infant. Front Pediatr 2018;6:39. DOI: 10.3389/fped.2018.00039.
  127. ACOG-Committee-on-Obstetric-Practice. Committee Opinion No. 814: Delayed Umbilical Cord Clamping After Birth: American College of Obstetricians and Gynecologists; 2020 updated 2023. 814. Available from: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/12/delayed-umbilical-cord-clamping-after-birth.
  128. Ganguly A, Makkar A, Sekar K. Volume targeted ventilation and high frequency ventilation as the primary modes of respiratory support for ELBW babies: What does the evidence say? Front Pediatr 2020;8:27. DOI: 10.3389/fped.2020.00027.
  129. Klingenberg C, Wheeler KI, McCallion N, et al. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev 2017;10(10):CD003666. DOI: 10.1002/14651858.CD003666.pub4.
  130. Koschnitzky JE, Keep RF, Limbrick DD, Jr., et al. Opportunities in posthemorrhagic hydrocephalus research: Outcomes of the hydrocephalus association posthemorrhagic hydrocephalus workshop. fluids barriers CNS 2018;15(1):11. DOI: 10.1186/s12987-018-0096-3.
  131. Kluckow M, Jeffery M, Gill A, et al. A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 2014;99(2):F99–F104. DOI: 10.1136/archdischild-2013-304695.
  132. Yanowitz TD, Baker RW, Sobchak Brozanski B. Prophylactic indomethacin reduces grades III and IV intraventricular hemorrhages when compared to early indomethacin treatment of a patent ductus arteriosus. J Perinatol 2003;23(4):317–322. DOI: 10.1038/sj.jp.7210893.
  133. Schmidt B, Davis P, Moddemann D, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med 2001;344(26):1966–1972. DOI: 10.1056/NEJM200106283442602.
  134. Luque MJ, Tapia JL, Villarroel L, et al. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin. J Perinatol 2014;34(1):43–48. DOI: 10.1038/jp.2013.127.
  135. Singh R, Gorstein SV, Bednarek F, et al. A predictive model for SIVH risk in preterm infants and targeted indomethacin therapy for prevention. Sci Rep 2013;3:2539. DOI: 10.1038/srep02539.
  136. Foglia EE, Roberts RS, Stoller JZ, et al. Effect of prophylactic indomethacin in extremely low birth weight infants based on the predicted risk of severe intraventricular hemorrhage. Neonatology 2018;113(2):183–186. DOI: 10.1159/000485172.
  137. Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev 2010;2010(7):CD000174. DOI: 10.1002/14651858.CD000174.pub2.
  138. Lamp KC, Reynolds MS. Indomethacin for prevention of neonatal intraventricular hemorrhage. DICP 1991;25(12):1344–1348. DOI: 10.1177/106002809102501213.
  139. Huang J, Wang Y, Tian T, et al. Risk factors for periventricular-intraventricular haemorrhage severity in preterm infants: A propensity score-matched analysis. BMC Pediatr 2023;23(1):341. DOI: 10.1186/s12887-023-04114-x.
  140. Romantsik O, Bruschettini M, Moreira A, et al. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2019;9(9):CD013201. DOI: 10.1002/14651858.CD013201.pub2.
  141. Radic JA, Vincer M, McNeely PD. Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr 2015;15(6):580–588. DOI: 10.3171/2014.11.PEDS14364.
  142. Brouwer AJ, Groenendaal F, Han KS, et al. Treatment of neonatal progressive ventricular dilatation: A single-centre experience. J Matern Fetal Neonatal Med 2015;28 Suppl 1:2273–2279. DOI: 10.3109/14767058.2013.796167.
  143. Gilard V, Chadie A, Ferracci FX, et al. Post hemorrhagic hydrocephalus and neurodevelopmental outcomes in a context of neonatal intraventricular hemorrhage: An institutional experience in 122 preterm children. BMC Pediatr 2018;18(1):288. DOI: 10.1186/s12887-018-1249-x.
  144. Roze E, Van Braeckel KN, van der Veere CN, et al. Functional outcome at school age of preterm infants with periventricular hemorrhagic infarction. Pediatrics 2009;123(6):1493–1500. DOI: 10.1542/peds.2008-1919.
  145. Christian EA, Jin DL, Attenello F, et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr 2016;17(3): 260–269. DOI: 10.3171/2015.7.PEDS15140.
  146. Fenton TR. A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC Pediatr 2003;3:13. DOI: 10.1186/1471-2431-3-13.
  147. Whitelaw A, Lee-Kelland R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev 2017;4(4):CD000216. DOI: 10.1002/14651858.CD000216.pub2.
  148. Wellons JC 3rd, Holubkov R, Browd SR, et al. The assessment of bulging fontanel and splitting of sutures in premature infants: An interrater reliability study by the hydrocephalus clinical research network. J Neurosurg Pediatr 2013;11(1):12–14. DOI: 10.3171/2012.10.PEDS12329.
  149. El-Dib M, Limbrick DD, Jr., Inder T, et al. Management of post-hemorrhagic ventricular dilatation in the infant born preterm. J Pediatr 2020;226:16–27.e3. DOI: 10.1016/j.jpeds.2020.07.079.
  150. Javeed F, Mohan A, Wara UU, et al. Ventriculoperitoneal shunt surgery for hydrocephalus: One of the common neurosurgical procedures and its related problems. Cureus 2023;15(2):e35002. DOI: 10.7759/cureus.35002.
  151. Park YS. Treatment strategies and challenges to avoid cerebrospinal fluid shunting for pediatric hydrocephalus. Neurol Med Chir (Tokyo) 2022;62(9):416–430. DOI: 10.2176/jns-nmc.2022-0100.
  152. Wang JY, Amin AG, Jallo GI, et al. Ventricular reservoir versus ventriculosubgaleal shunt for posthemorrhagic hydrocephalus in preterm infants: infection risks and ventriculoperitoneal shunt rate. J Neurosurg Pediatr 2014;14(5):447–454. DOI: 10.3171/2014.7.PEDS13552.
  153. Wellons JC, 3rd, Shannon CN, Holubkov R, et al. Shunting outcomes in posthemorrhagic hydrocephalus: Results of a hydrocephalus clinical research network prospective cohort study. J Neurosurg Pediatr 2017;20(1):19–29. DOI: 10.3171/2017.1.PEDS16496.
  154. de Vries LS, Brouwer AJ, Groenendaal F. Posthaemorrhagic ventricular dilatation: when should we intervene? Arch Dis Child Fetal Neonatal Ed 2013;98(4):F284–F285. DOI: 10.1136/archdischild-2012-303158.
  155. Parikh JR, Nolan RL. Acetazolamide-induced nephrocalcinosis. Abdom Imaging 1994;19(5):466–467. DOI: 10.1007/BF00206942.
  156. Campfield T, Braden G, Flynn-Valone P, et al. Effect of diuretics on urinary oxalate, calcium, and sodium excretion in very low birth weight infants. Pediatrics 1997;99(6):814–818. DOI: 10.1542/peds.99.6.814.
  157. Kennedy CR, Ayers S, Campbell MJ, et al. Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 2001;108(3):597–607. DOI: 10.1542/peds.108.3.597.
  158. Hasanain AA, Abdullah A, Alsawy MFM, et al. Incidence of and causes for ventriculoperitoneal shunt failure in children younger than 2 years: A systematic review. J Neurol Surg A Cent Eur Neurosurg 2019;80(1):26–33. DOI: 10.1055/s-0038-1669464.
  159. Dorner RA, Burton VJ, Allen MC, et al. Preterm neuroimaging and neurodevelopmental outcome: A focus on intraventricular hemorrhage, post-hemorrhagic hy
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.