Newborn

Register      Login

VOLUME 3 , ISSUE 2 ( April-June, 2024 ) > List of Articles

ORIGINAL RESEARCH

Concerns about Mis-/Overuse of Antibiotics in Neonates Born at ≤32 Weeks Gestational Age in Latin American Neonatal Units: Eight Years of Experience in the EpicLatino Database

Angela B Hoyos, Ariel Salas, Horacio Osiovich, Carlos A Fajardo, Martha Baez, Luis Monterrosa, Carolina Villegas-Alvarez, Fernando Aguinaga, Maria I Martinini

Keywords : Antibiotics per 1,000 patient-days, Antibiotic use practices, Baby, EpicLatino database, Infant, Latin America and the Caribbean, Mortality, Neonatal intensive care units, Neonatal outcomes, Neonates, Newborn, Premature neonates

Citation Information : Hoyos AB, Salas A, Osiovich H, Fajardo CA, Baez M, Monterrosa L, Villegas-Alvarez C, Aguinaga F, Martinini MI. Concerns about Mis-/Overuse of Antibiotics in Neonates Born at ≤32 Weeks Gestational Age in Latin American Neonatal Units: Eight Years of Experience in the EpicLatino Database. 2024; 3 (2):83-89.

DOI: 10.5005/jp-journals-11002-0098

License: CC BY-NC 4.0

Published Online: 21-06-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

There is considerable variability in the duration of antibiotic in neonatal intensive care units (NICUs) all over the world and is highly dependent on gestational ages (GA). It is difficult to withhold antibiotics in critically ill preterm infants because the possibility of infection is difficult to exclude in these patients and the acuity of illness can progress rapidly with potentially disastrous consequences. Available data encouragingly suggest that the incidence of early onset sepsis (EOS) might be lower in EpicLatino units in Latin America compared with Canadian research network (CNN) in 2022 in <30 weeks, but late onset sepsis (LOS) is more frequent at different GA. However, there is an overall scarcity of detailed information from many countries. The annual reports from EpicLatino database do show a high degree of variability in outcomes and a need for cautious interpretation of these figures. However, we still need to establish clear standards for antibiotic use in premature infants; these drugs are essential for combating infections and saving lives but mis-/overuse can exacerbate the risk of late-onset infections, necrotizing enterocolitis (NEC), bacterial resistance, and increase the cost of care. In this study, we aimed to find information on the patterns of antibiotic use in infants born at ≤32 weeks’ gestation in the EpicLatino units during the period 2015–2022. A specifically designed questionnaire was sent to unit medical directors to determine whether the total antibiotic use per unit per 1,000 patient-days correlated with the incidence-rate ratios. This is a data-collecting/descriptive study that it will help us in designing further efforts and choosing the sites for intervention.


PDF Share
  1. Ting JY, Synnes A, Roberts A, et al. Association between antibiotic use and neonatal mortality and morbidities in very low-birth-weight infants without culture-proven sepsis or necrotizing enterocolitis. JAMA Pediatr 2016;170(12):1181–1187. DOI: 10.1001/jamapediatrics.2016.2132.
  2. Clark RH, Bloom BT, Spitzer AR, et al. Reported medication use in the neonatal intensive care unit: Data from a large national data set. Pediatrics 2006;117(6):1979–1987. DOI: 10.1542/peds.2005-1707.
  3. Prusakov P, Goff DA, Wozniak PS, et al. A global point prevalence survey of antimicrobial use in neonatal intensive care units: The no-more-antibiotics and resistance (NO-MAS-R) study. EClinicalMedicine 2021;32(9):100727. DOI: 10.1016/j.eclinm.2021.100727.
  4. Fanaroff AA, Korones SB, Wright LL, et al. Incidence, presenting features, risk factors and significance of late onset septicemia in very low birth weight infants. The National Institute of Child Health and Human Development Neonatal Research Network. Pediatr Infect Dis J 1998;17(7):593–598. DOI: 10.1097/00006454-199807000- 00004.
  5. OECD. Transition Finance Toolkit: Organisation for Economic Co-operation and Development; 2024. Available from: https://www.oecd.org/dac/transition-finance-toolkit/LMIC-to-UMIC.pdf.
  6. Hayes R, Hartnett J, Semova G, et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr Res 2023;93(5):1141–1148. DOI: 10.1038/s41390-021-01749-3.
  7. Chaurasia S, Sivanandan S, Agarwal R, et al. Neonatal sepsis in South Asia: Huge burden and spiralling antimicrobial resistance. BMJ 2019;364:k5314. DOI: 10.1136/bmj.k5314.
  8. Klingenberg C, Kornelisse RF, Buonocore G, et al. Culture-negative early-onset neonatal sepsis - At the crossroad between efficient sepsis care and antimicrobial stewardship. Front Pediatr 2018;6:285. DOI: 10.3389/fped.2018.00285.
  9. Kopsidas I, Tsopela GC, Molocha NM, et al. Reducing duration of antibiotic use for presumed neonatal early-onset sepsis in greek nicus. A “low-hanging fruit” approach. Antibiotics (Basel) 2021;10(3). DOI: 10.3390/antibiotics10030275.
  10. Gyllensvard J, Studahl M, Gustavsson L, et al. Antibiotic use in late preterm and full-term newborns. JAMA Netw Open 2024;7(3):e243362. DOI: 10.1001/jamanetworkopen.2024.3362.
  11. Almagor J, Temkin E, Benenson I, et al. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PLoS One 2018;13(5):e0197111. DOI: 10.1371/journal.pone.0197111.
  12. Cizman M, Plankar Srovin T. Antibiotic consumption and resistance of gram-negative pathogens (collateral damage). GMS Infect Dis 2018;6:Doc05. DOI: 10.3205/id000040.
  13. Puopolo KM, Benitz WE, Zaoutis TE, et al. Management of neonates born at ≥35 0/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics 2018;142(6): e20182894. DOI: 10.1542/peds.2018-2896.
  14. Fernandes M, Winckworth L, Lee L, et al. Screening for early-onset neonatal sepsis on the Kaiser Permanente sepsis risk calculator could reduce neonatal antibiotic usage by two-thirds. Pediatr Investig 2022;6(3):171–178. DOI: 10.1002/ped4.12344.
  15. NICE. Surveillance report 2017 – Neonatal infection early onset (2012) NICE guideline CG149. London, UK: National Institute for Health and Care Excellence (NICE); 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK550970/.
  16. Puopolo KM, Benitz WE, Zaoutis TE, et al. Management of neonates born at ≤34 6/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics 2018;142(6). DOI: 10.1542/peds.2018-2894.
  17. Zelellw DA, Dessie G, Worku Mengesha E, et al. A systemic review and meta-analysis of the leading pathogens causing neonatal sepsis in developing countries. Biomed Res Int 2021;2021:6626983. DOI: 10.1155/2021/6626983.
  18. Hoyos A, Villegas C, Aguinaga F, et al. Report 2022 EpicLatino Calgary, Canada: EpicLatino Network; 2022. p. 26. Available from: https://www.canadianneonatalnetwork.org/portal.
  19. Hoyos A, Villegas C, Aguinaga F, et al. Report 2022 EpicLatino Calgary, Canada: EpicLatino Network; 2022. pp. 25–26. Available from: https://www.epiclatino.co/Ingles-reporte-2022-Final-min.pdf (epiclatino.co).
  20. Stoll BJ, Gordon T, Korones SB, et al. Late-onset sepsis in very low birth weight neonates: A report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr 1996;129(1):63–71. DOI: 10.1016/s0022-3476(96)70191-9.
  21. Kayange N, Kamugisha E, Mwizamholya DL, et al. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatr 2010;10:39. DOI: 10.1186/1471-2431-10-39.
  22. Canadian-Neonatal-Network. Annual Reports Toronto, Canada: Canadian Neonatal Network; 2022. Available from: https://www.canadianneonatalnetwork.org/portal/CNNHome.aspx.
  23. Hoyos A, Villegas C, Aguinaga F, et al. Report 2021 EpicLatino Calgary, Canada: EpicLatino Network; 2021. Available from: https://epiclatino.co/wp-content/uploads/2022/08/Report-2021-English.pdf.
  24. Fajardo C, Alshaikh B, Harabor A. Prolonged use of antibiotics after birth is associated with increased morbidity in preterm infants with negative cultures. J Matern Fetal Neonatal Med 2019;32(24):4060–4066. DOI: 10.1080/14767058.2018.1481042.
  25. Hoyos A, Villegas C, Aguinaga F, et al. Report 2022 EpicLatino Calgary, Canada: EpicLatino Network; 2022. Available in: https://www.epiclatino.co reportes 2015-2022.
  26. Ibanez-Pinilla M, Villalba-Nino S, Olaya-Galan NN. Negative log-binomial model with optimal robust variance to estimate the prevalence ratio, in cross-sectional population studies. BMC Med Res Methodol 2023;23(1):219. DOI: 10.1186/s12874-023-01999-1.
  27. Kim HY. Statistical notes for clinical researchers: Understanding standard deviations and standard errors. Restor Dent Endod 2013;38(4):263–265. DOI: 10.5395/rde.2013.38.4.263.
  28. O'Brien SF, Yi QL. How do I interpret a confidence interval? Transfusion. 2016;56(7):1680–1683. DOI: 10.1111/trf.13635.
  29. Queiros da Mota V, Prodhom G, Yan P, et al. Correlation between placental bacterial culture results and histological chorioamnionitis: A prospective study on 376 placentas. J Clin Pathol 2013;66(3):243–248. DOI: 10.1136/jclinpath-2012-201124.
  30. Day KN, Vircks JA, Henricks CE, et al. Latency antibiotics in preterm prelabor rupture of membranes: A comparison of azithromycin regimens. Ann Pharmacother 2024;58(3):234–240. DOI: 10.1177/10600280231181135.
  31. Vitral GLN, Romanelli RMC, Leonel TA, et al. Influence of different methods for calculating gestational age at birth on prematurity and small for gestational age proportions: A systematic review with meta-analysis. BMC Pregnancy Childbirth 2023;23(1):106. DOI: 10.1186/s12884-023-05411-0.
  32. Lee LH, Bradburn E, Craik R, et al. Machine learning for accurate estimation of fetal gestational age based on ultrasound images. NPJ Digit Med 2023;6(1):36. DOI: 10.1038/s41746-023-00774-2.
  33. Hasmasanu MG, Bolboaca SD, Baizat MI, et al. Neonatal short-term outcomes in infants with intrauterine growth restriction. Saudi Med J 2015;36(8):947–953. DOI: 10.15537/smj.2015.8.11533.
  34. Achten NB, Juliana AE, Lissone NP, et al. Epidemiology and mortality of early-onset neonatal sepsis in suriname: A 2-year surveillance study. J Pediatric Infect Dis Soc 2021;10(4):514–516. DOI: 10.1093/jpids/piaa130.
  35. Hoffmann K, Pischon T, Schulz M, et al. A statistical test for the equality of differently adjusted incidence rate ratios. Am J Epidemiol 2008;167(5):517–522. DOI: 10.1093/aje/kwm357.
  36. Olesen SW, Barnett ML, MacFadden DR, et al. The distribution of antibiotic use and its association with antibiotic resistance. Elife 2018;7: e39435. DOI: 10.7554/eLife.39435.
  37. Atsma F, Elwyn G, Westert G. Understanding unwarranted variation in clinical practice: A focus on network effects, reflective medicine and learning health systems. Int J Qual Health Care 2020;32(4):271–274. DOI: 10.1093/intqhc/mzaa023.
  38. WHO. Global report on the epidemiology and burden of sepsis: Current evidence, identifying gaps and future directions World-Health-Organization 2020. Available from: https://www.who.int/publications/i/item/9789240010789.
  39. Comarow A. America's best hospitals. US News World Rep 2003;135(3):46–48, 90, 4 passim. PMID: 12931383.
  40. O'Connor AM, Rostom A, Fiset V, et al. Decision aids for patients facing health treatment or screening decisions: Systematic review. BMJ 1999;319(7212):731–734. DOI: 10.1136/bmj.319.7212.731.
  41. Wennberg JE, Freeman JL, Culp WJ. Are hospital services rationed in New Haven or over-utilised in Boston? Lancet 1987;1(8543):1185–1189. DOI: 10.1016/s0140-6736(87)92152-0.
  42. Wennberg JE, Freeman JL, Shelton RM, et al. Hospital use and mortality among Medicare beneficiaries in Boston and New Haven. N Engl J Med 1989;321(17):1168–1173. DOI: 10.1056/NEJM198910263211706.
  43. Fisher ES, Wennberg JE, Stukel TA, et al. Hospital readmission rates for cohorts of Medicare beneficiaries in Boston and New Haven. N Engl J Med 1994;331(15):989–995. DOI: 10.1056/NEJM199410133311506.
  44. Wagner EH, Grothaus LC, Sandhu N, et al. Chronic care clinics for diabetes in primary care: A system-wide randomized trial. Diabetes Care 2001;24(4):695–700. DOI: 10.2337/diacare.24.4.695.
  45. Fichtner D, Flemmer AW, Fischer U, et al. [Does the nursing shortage in neonatal intensive care units (NICU) threaten the warranty of healthcare for newborns?: The “Mary and Joseph” project]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023;66(9):1019–1029. DOI: 10.1007/s00103-023-03749-6.
  46. Mukhopadhyay S, Sengupta S, Puopolo KM. Challenges and opportunities for antibiotic stewardship among preterm infants. Arch Dis Child Fetal Neonatal Ed 2019;104(3):F327–F332. DOI: 10.1136/archdischild-2018-315412.
  47. Viel-Theriault I, Agarwal A, Bariciak E, et al. Antimicrobial prophylaxis use in the neonatal intensive care unit: An antimicrobial stewardship target that deserves attention! Am J Perinatol 2022;39(12):1288–1291. DOI: 10.1055/s-0040-1722600.
  48. Sutherland K, Levesque JF. Unwarranted clinical variation in health care: Definitions and proposal of an analytic framework. J Eval Clin Pract 2020;26(3):687–696. DOI: 10.1111/jep.13181.
  49. Morales-Betancourt C, De la Cruz-Bertolo J, Munoz-Amat B, et al. Reducing early antibiotic use: A quality improvement initiative in a level III neonatal intensive care unit. Front Pediatr 2022;10:913175. DOI: 10.3389/fped.2022.913175.
  50. Donabedian A. Evaluating the quality of medical care. Milbank Q 2005;83(4):691–729. DOI: 10.1111/j.1468-0009.2005.00397.x.
  51. Dukhovny D, Buus-Frank ME, Edwards EM, et al. A collaborative multicenter QI initiative to improve antibiotic stewardship in newborns. Pediatrics 2019;144(6):e20190589. DOI: 10.1542/peds.2019-0589.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.