Register      Login

VOLUME 2 , ISSUE 4 ( October-December, 2023 ) > List of Articles


Lung Ultrasound as a Novel Tool to Assess the Severity and Management of Neonatal Pneumonia

Divya Durga, Usha Devi, Kirti Gupta, Pradeep Suryawanshi

Keywords : Alveolar-interstitial pattern, A-lines, Air bronchograms, Atelectasis, B-lines, Comet tail artifacts, Community-acquired, Consolidation, Dynamic air bronchograms, ESPNIC, Empyema, Hemithorax, Hepatization, High-frequency linear array transducer probe, Lobar lung collapse, Lung sliding, Lung ultrasound, Meconium aspiration syndrome, Micro-atelectasis, Neonatal pneumonia, Pleural line, Pneumonia, Point-of-care lung ultrasound, Respiratory distress syndrome, Static air bronchograms, Subpleural consolidations, Synpneumonic, Transient tachypnea, Transient tachypnea of newborn, Ventilator-associated pneumonia

Citation Information : Durga D, Devi U, Gupta K, Suryawanshi P. Lung Ultrasound as a Novel Tool to Assess the Severity and Management of Neonatal Pneumonia. 2023; 2 (4):291-296.

DOI: 10.5005/jp-journals-11002-0076

License: CC BY-NC 4.0

Published Online: 05-01-2024

Copyright Statement:  Copyright © 2023; The Author(s).


The use of lung ultrasound in neonatal intensive care units has greatly increased in recent years. Multicentric studies and meta-analyses have shown ultrasound as a tool with good sensitivity and specificity in the diagnosis of severe neonatal and childhood pneumonia. However, we still lack a standardized scoring system for neonatal pneumonia. In this paper, we propose a 5-grade lung ultrasound score (LUS) for increasing the severity of pneumonia, which indicates its progression and onset of associated complications. This bedside score using lung ultrasound will help in early detection, assessment of severity, and the need for timely administration of antibiotics.

  1. Chen SW, Zhang MY, Liu J. Application of lung ultrasonography in the diagnosis of childhood lung diseases. Chin Med J 2015;128(19):2672–2678. DOI: 10.4103/0366-6999.166035.
  2. Sharma D, Farahbakhsh N. Role of chest ultrasound in neonatal lung disease: A review of current evidences. J Matern Fetal Neonatal Med 2019;32(2):310–316. DOI: 10.1080/14767058.2017.1376317.
  3. Chen S-W, Fu W, Liu J, et al. Routine application of lung ultrasonography in the neonatal intensive care unit. Medicine 2017;96(2):e5826. DOI: 10.1097/MD.0000000000005826.
  4. Gao YQ, Qiu RX, Liu J, et al. Lung ultrasound completely replaced chest x-ray for diagnosing neonatal lung diseases: A 3-year clinical practice report from a neonatal intensive care unit in China. J Matern Fetal Neonatal Med 2022;35(18):3565–3572. DOI: 10.1080/14767058.2020.1830369.
  5. Escourrou De Luca D. Lung ultrasound decreased radiation exposure in preterm infants in a neonatal intensive care unit. Acta Paediatr 2016;105(5):e237–e239. DOI: 10.1111/apa.13369.
  6. Cattarossi L, Copetti R, Poskurica B. Radiation exposure early in life can be reduced by lung ultrasound. Chest 2011;139(3):730–731. DOI: 10.1378/chest.10-2338.
  7. Tandircioglu UA, Yigit S, Oguz B, et al. Lung ultrasonography decreases radiation exposure in newborns with respiratory distress: A retrospective cohort study. Eur J Pediatr 2022;181(3):1029–1035. DOI: 10.1007/s00431-021-04296-5.
  8. Perri A, Sbordone A, Tirone C, et al. Early lung ultrasound score to predict noninvasive ventilation needing in neonates from 33 weeks of gestational age: A multicentric study. Pediatr Pulmonol 2022;57(9):2227–2236. DOI: 10.1002/ppul.26031.
  9. Xi G, Dai J, Wang X, et al. Ultrasound performed shortly after birth can predict the respiratory support needs of late preterm and term infants: A diagnostic accuracy study. Pediatr Pulmonol 2021;56(7):2155–2163. DOI: 10.1002/ppul.
  10. Rodríguez-Fanjul J, Balcells C, Aldecoa-Bilbao V, et al. Lung ultrasound as a predictor of mechanical ventilation in neonates older than 32 weeks. Neonatology 2016;110(3):198–203. DOI: 10.1159/000445932.
  11. Raimondi F, Migliaro F, Sodano A, et al. Use of neonatal chest ultrasound to predict noninvasive ventilation failure. Pediatrics 2014;134(4):e1089–e1094. DOI: 10.1542/peds.2013-3924.
  12. Abdelmawla M, Seleem W, Farooqui M, et al. Prediction of weaning readiness off nasal CPAP in preterm infants using point-of-care lung ultrasound. Pediatr Pulm 2022;57(9):2128–2135. DOI: 10.1002/ppul.26014.
  13. Soliman RM, Elsayed Y, Said RN, et al. Prediction of extubation readiness using lung ultrasound in preterm infants. Pediatr Pulmonol 2021;56(7):2073–2080. DOI: 10.1002/ppul.25383.
  14. Liang Z, Meng Q, You C, et al. Roles of lung ultrasound score in the extubation failure from mechanical ventilation among premature infants with neonatal respiratory distress syndrome. Front Pediatr 2021;9:709160. DOI: 10.3389/fped.2021.709160.
  15. El Amrousy D, Elgendy M, Eltomey M, et al. Value of lung ultrasonography to predict weaning success in ventilated neonates. Pediatr Pulmonol 2020;55(9):2452–2456. DOI: 10.1002/ppul.24934.
  16. Pierro M, Chioma R, Ciarmoli E, et al. Lung ultrasound guided pulmonary recruitment during mechanical ventilation in neonates: A case series. J Neonatal Perinatal Med 2022;15(2):357–365. DOI: 10.3233/NPM-210722.
  17. Liu J, Xia RM, Ren XL, et al. The new application of point-of-care lung ultrasound in guiding or assisting neonatal severe lung disease treatment based on a case series. J Matern Fetal Neonatal Med 2020;33(23):3907–3915. DOI: 10.1080/14767058.2019.1590332.
  18. Khemani RG, Smith LS, Zimmerman JJ, et al. Pediatric acute respiratory distress syndrome: Definition, incidence, and epidemiology. Pediatr Crit Care Med 2015;16(5 Suppl 1):S23–S40. DOI: 10.1097/PCC.0000000000000432.
  19. Angus DC, Linde-Zwirble WT, Clermont G, et al. Epidemiology of neonatal respiratory failure in the United States: Projections from California and New York. Am J Respir Crit Care Med 2001;164(7):1154–1160. DOI: 10.1164/ajrccm.164.7.2012126.
  20. Pereda MA, Chavez MA, Hooper-Miele CC, et al. Lung ultrasound for the diagnosis of pneumonia in children: A meta-analysis. Pediatrics 2015;135(4):714–722. DOI: 10.1542/peds.2014-2833.
  21. O'Brien WD. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 2007;93(1–3):212–255. DOI: 10.1016/j.pbiomolbio.2006.07.010.
  22. Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012;38(4):577–591. DOI: 10.1007/s00134-012-2513-4.
  23. Brusa G, Savoia M, Vergine M, et al. Neonatal lung sonography: Interobserver agreement between physician interpreters with varying levels of experience. J Ultrasound Med 2015;34(9):85–92. DOI: 10.7863/ultra.34.1.85.
  24. Peroni DG, Boner AL. Atelectasis: Mechanisms, diagnosis and management. Paediatr Respir Rev 2000;1(3):274–278. DOI: 10.1053/prrv.2000.0059.
  25. Caiulo VA, Gargani L, Caiulo S, et al. Usefulness of lung ultrasound in a newborn with pulmonary atelectasis. Pediatr Med Chir 2011;33(5–6):253–255. PMID: 22428435.
  26. Liu J, Chen SW, Liu F, et al. The diagnosis of neonatal pulmonary atelectasis using lung ultrasonography. Chest 2015;147:1013–1019. DOI: 10.1378/chest.14-130.
  27. Liu X, Si S, Guo Y, et al. Limitations of bedside lung ultrasound in neonatal lung diseases. Front Pediatr 2022;10:855958. DOI: 10.3389/fped.2022.855958.
  28. Saraogi A. Lung ultrasound: Present and future. Lung India 2015;32(3):250–257. DOI: 10.4103/0970-2113.156245.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.