Keywords :
Acoustic windows, Anterior cerebral artery, Anterior fontanelle, Area under the velocity curve, Basilar artery, Brain injury, Continuous-wave Doppler, Convex probe, Cerebral autoregulation, Cerebral blood flow, Cerebral Doppler, Cerebral Doppler ultrasound, Doppler index, Doppler waveform, Hemodynamically significant patent ductus arteriosus, End-diastolic velocity, High-frequency linear transducer, Hypoxic–ischemic encephalopathy, Neuroanatomy, Intrauterine growth restriction, Intraventricular hemorrhage, Kangaroo mother care, Line of insonation, Liquefactive necrosis, Neonate, Peak-systolic velocity, Plial arterioles, Pulse-wave Doppler signal, Pulsatility index, Resistive index, Vein of Galen malformation
Citation Information :
Kumar G, Patodia J, Padhan NC, Suryawanshi P. Transcranial Doppler: A New Stethoscope–Voiceover Tool for Neonatal Brain. 2023; 2 (4):279-290.
Background: Cerebral Doppler ultrasound is an emerging bedside tool to measure cerebral perfusion in premature and critically ill neonates. The review focused on maturation and disease-associated Doppler spectra in neonates for diagnostic and prognostic relevance and to identify relevant research areas.
Methods: A comprehensive literature search was conducted to review cerebral Doppler parameters noted in specific disease states. Further efforts were focused to understand the clinical relevance of these indices in the management of neonates and to predict their long-term neurodevelopmental outcomes.
Results: The review focused on routinely used cerebral Doppler parameters in normal and diseased states. Resistive index (RI) in the anterior cerebral artery (ACA) is a frequently used parameter in infants with primary brain injury and in preterm neonates with hemodynamically significant patent ductus arteriosus (HsPDA).
Conclusion: Despite extensive use, major gaps remain in our understanding of cerebral Doppler parameters for diagnosis, monitoring, and prediction of neurodevelopmental outcomes in neonates. Further studies are needed to decode these data in a more precise manner.
Bada HS, Hajjar W, Chua C, et al. Noninvasive diagnosis of neonatal asphyxia and intraventricular hemorrhage by Doppler ultrasound. J Pediatr 1979;95(5 Pt 1):775–779. DOI: 10.1016/s0022-3476(79)80735-0.
Budohoski KP, Czosnyka M, Kirkpatrick PJ, et al. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol 2013;9(3):152–163. DOI: 10.1038/nrneurol.2013.11.
Leon RL, Ortigoza EB, Ali N, et al. Cerebral blood flow monitoring in high-risk fetal and neonatal populations. Front Pediatr 2022;9:748345. DOI: 10.3389/fped.2021.748345.
Milona E, Karagianni P, Tsakalidis C, et al. Evaluation of cerebral oxygenation and perfusion in small for gestational age neonates and neurodevelopmental outcome at 24–36 months of age. J Perinat Med 2020;48(3):280–288. DOI: 10.1515/jpm-2019-0274.
Fenton AC, Woods KL, Evans DH, et al. Cerebrovascular carbon dioxide reactivity and failure of autoregulation in preterm infants. Arch Dis Child 1992;67(7 Spec No):835–839. DOI: 10.1136/adc.67.7_spec_no.835.
Bada HS, Korones SB, Kolni HW, et al. Partial plasma exchange transfusion improves cerebral hemodynamics in symptomatic neonatal polycythemia. Am J Med Sci 1986;291(3):157–163. DOI: 10.1097/00000441-198603000-00003.
Hamon I, Hascoet JM, Debbiche A, et al. Effects of fentanyl administration on general and cerebral haemodynamics in sick newborn infants. Acta Paediatr 1996;85(3):361–365. DOI: 10.1111/j.1651-2227.1996.tb14033.x.
Ichihashi K, Iino M, Eguchi Y, et al. Effect of head position to the cerebral arterial flow in neonates. Early Hum Dev 2002;69(1–2):35–46. DOI: 10.1016/s0378-3782(02)00037-3.
Buckley EM, Cook NM, Durduran T, et al. Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt Express 2009;17(15):12571–12581. DOI: 10.1364/oe.17.012571.
Duckrow RB. Decreased cerebral blood flow during acute hyperglycemia. Brain Res 1995;703(1–2):145–150. DOI: 10.1016/0006-8993(95)01077-7.
Pezzati M, Dani C, Biadaioli R, et al. Early postnatal Doppler assessment of cerebral blood flow velocity in healthy preterm and term infants. Dev Med Child Neurol 2002;44(11):745–752. DOI: 10.1017/s0012162201002870.
Ecury-Goossen GM, Raets MM, Camfferman FA, et al. Resistive indices of cerebral arteries in very preterm infants: Values throughout stay in the neonatal intensive care unit and impact of patent ductus arteriosus. Pediatr Radiol 2016;46(9):1291–1300. DOI: 10.1007/s00247-016-3615-x.
Archer LN, Evans DH, Levene MI. Doppler ultrasound examination of the anterior cerebral arteries of normal newborn infants: The effect of postnatal age. Early Hum Dev 1985;10(3–4):255–260. DOI: 10.1016/0378-3782(85)90056-8.
Allison JW, Faddis LA, Kinder DL, et al. Intracranial resistive index (RI) values in normal term infants during the first day of life. Pediatr Radiol 2000;30(9):618–620. DOI: 10.1007/s002470000286.
Bulas DI. Transcranial doppler: Applications in neonates and children. Ultrasound Clin 2009;4(4):533–551. DOI: 10.1016/j.cult.2009.11.001.
Horgan JG, Rumack CM, Hay T, et al. Absolute intracranial blood-flow velocities evaluated by duplex Doppler sonography in asymptomatic preterm and term neonates. AJR Am J Roentgenol 1989;152(5): 1059–1064. DOI: 10.2214/ajr.152.5.1059.
Jarmund AH, Pedersen SA, Torp H, et al. A scoping review of cerebral Doppler arterial waveforms in infants. Ultrasound Med Biol 2023;49(4):919–936. DOI: 10.1016/j.ultrasmedbio.2022.12.007.
Seibert JJ, Chadduck WM, Seibert JJ, et al. Duplex pulsed Doppler US versus intracranial pressure in the neonate: Clinical and experimental studies. Radiology 1989;171(1):155–159. DOI: 10.1148/radiology.171.1.2648468.
Couture A, Veyrac C, Baud C, et al. Advanced cranial ultrasound: Transfontanellar Doppler imaging in neonates. Eur Radiol 2001;11(12):2399–2410. DOI: 10.1007/s00330-001-1150-z.
Menke J, Michel E, Rabe H, et al. Simultaneous influence of blood pressure, PCO2, and PO2 on cerebral blood flow velocity in preterm infants of less than 33 weeks’ gestation. Pediatr Res 1993;34(2): 173–177. DOI: 10.1203/00006450-199308000-00014.
Camfferman FA, de Goederen R, Govaert P, et al. Diagnostic and predictive value of Doppler ultrasound for evaluation of the brain circulation in preterm infants: A systematic review. Pediatr Res 2020;87(Suppl 1):50–58. DOI: 10.1038/s41390-020-0777-x.
Van Bel F, Van de Bor M, Stijnen T, et al. Aetiological role of cerebral blood-flow alterations in development and extension of peri-intraventricular haemorrhage. Dev Med Child Neurol 1987;29(5):601–614. DOI: 10.1111/j.1469-8749.1987.tb08502.x.
Ikeda T, Amizuka T, Ito Y, et al. Changes in the perfusion waveform of the internal cerebral vein and intraventricular hemorrhage in the acute management of extremely low-birth-weight infants. Eur J Pediatr 2015;174(3):331–338. DOI: 10.1007/s00431-014-2396-1.
Okumura A, Toyota N, Hayakawa F, et al. Cerebral hemodynamics during early neonatal period in preterm infants with periventricular leukomalacia. Brain Dev 2002;24(7):693–697. DOI: 10.1016/s0387-7604(02)00083-9.
Fukuda S, Kato T, Kakita H, et al. Hemodynamics of the cerebral arteries of infants with periventricular leukomalacia. Pediatrics 2006;117(1):1–8. DOI: 10.1542/peds.2004-1719.
Natique KR, Das Y, Maxey MN, et al. Early use of transcranial doppler ultrasonography to stratify neonatal encephalopathy. Pediatr Neurol 2021;124:33–39. DOI: 10.1016/j.pediatrneurol.2021.07.004.
Archer LN, Levene MI, Evans DH. Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 1986;328(8516):1116–1118. DOI: 10.1016/s0140-6736(86)90528-3.
Liu J, Cao HY, Huang XH, et al. The pattern and early diagnostic value of Doppler ultrasound for neonatal hypoxic-ischemic encephalopathy. J Tropical Pediatr 2007;53(5):351–354. DOI: 10.1093/tropej/fmm046.
Rath C, Rao S, Suryawanshi P, et al. Does abnormal Doppler on cranial ultrasound predict disability in infants with hypoxic-ischaemic encephalopathy? A systematic review. Dev Med Child Neurol 2022;64(10):1202–1213. DOI: 10.1111/dmcn.15236.
Basu S, Dewangan S, Shukla RC, et al. Cerebral blood flow velocity in early-onset neonatal sepsis and its clinical significance. Eur J Pediatr 2012;171(6):901–909. DOI: 10.1007/s00431-011-1643-y.
Ratnaparkhi CR, Bayaskar MV, Dhok AP, et al. Utility of Doppler ultrasound in early-onset neonatal sepsis. Indian J Radiol Imaging 2020;30(1):52–58. DOI: 10.4103/ijri.IJRI_265_19.
Furukawa S, Sameshima H, Ikenoue T. Circulatory disturbances during the first postnatal 24 hours in extremely premature infants 25 weeks or less of gestation with histological fetal inflammation. J Obs Gynaecol Res 2008;34(1):27–33. DOI: 10.1111/j.1447-0756.2007.00678.x.
Pfister D, Schmidt B, Smielewski P, et al. Intracranial pressure in patients with sepsis. Acta Neurochir Suppl 2008;102:71–75. DOI: 10.1007/978-3-211-85578-2_14.
Yengkhom R, Suryawanshi P, Ingale S, et al. Resistive index in late-onset neonatal sepsis. J Neonatol 2018;32(4):93–97. DOI: https://doi.org/10.1177/0973217920901998.
Perlman JM, Hill A, Volpe JJ. The effect of patent ductus arteriosus on flow velocity in the anterior cerebral arteries: Ductal steal in the premature newborn infant. J Pediatr 1981;99(5):767–771. DOI: 10.1016/s0022-3476(81)80408-8.
Martin CG, Snider AR, Katz SM, et al. Abnormal cerebral blood flow patterns in preterm infants with a large patent ductus arteriosus. J Pediatr 1982;101(4):587–593. DOI: 10.1016/s0022-3476(82)80715-4.
Battisti O. Listening to the brain of the newborn by the Doppler Method; 2009. Available from: https://orbi.uliege.be>/2268/15354/1.
Raju TN. Cranial Doppler applications in neonatal critical care. Critical care clinics 1992;8(1):93–111. DOI: https://doi.org/10.1016/S0749-0704(18)30269-0.
Vettukattil JJ. Pathophysiology of patent Ductus arteriosus in the preterm infant. Curr Pediatr Rev 2016;12(2):120–122. DOI: 10.2174/157339631202160506002215.
Kupferschmid CH, Lang D, Pohlandt F. Sensitivity, specificity and predictive value of clinical findings, m-mode echocardiography and continuous-wave Doppler sonography in the diagnosis of symptomatic patent ductus arteriosus in preterm infants. Eur J Pediatr 1988;147(3):279–282. DOI: 10.1007/BF00442695.
Lipman B, Serwer GA, Brazy JE. Abnormal cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatrics 1982;69(6):778–781. PMID: 7079043.
Bravo MC, Cabanas F, Riera J, et al. Randomised controlled clinical trial of standard versus echocardiographically guided ibuprofen treatment for patent ductus arteriosus in preterm infants: A pilot study. J Mater Fetal Neonatal Med 2014;27(9):904–909. DOI: 10.3109/14767058.2013.846312.
Berfelo FJ, Kersbergen KJ, Van Ommen CH, et al. Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke 2010;41(7):1382–1388. DOI: 10.1161/STROKEAHA.110.583542.
Grunt S, Wingeier K, Wehrli E, et al. Cerebral sinus venous thrombosis in Swiss children. Dev Med Child Neurol 2010;52(12):1145–1150. DOI: 10.1111/j.1469-8749.2010.03722.x.
Deeg KH. Sonographic and Doppler sonographic diagnosis of neonatal ischemic stroke. Ultraschall Med 2017;38(4):360–376. DOI: 10.1055/s-0043-114409.
Meila D, Lisseck K, Jacobs C, et al. Cranial Doppler ultrasound in vein of Galen malformation. Neuroradiology 2015;57(2):211–219. DOI: 10.1007/s00234-014-1455-7.
Sahoo M, Dubey B, Vani K, et al. Changes in cerebral blood flow parameters among preterm 30–34 week neonates who are initiated on kangaroo mother care – A prospective analytical observational study. Early Hum Dev 2023;180:105764. DOI: 10.1016/j.earlhumdev.2023.105764.
Chaudhari AJ, Nimbalkar SM, Patel DV, et al. Effect of kangaroo mother care on cerebral hemodynamics in preterm neonates assessed by transcranial doppler sonography in middle cerebral artery. Indian Pediatr 2023;60(1):27–32. DOI: 10.1016/j.earlhumdev.2023.10 5764.
Basu S, Dewangan S, Barman S, et al. Postnatal changes in cerebral blood flow velocity in term intra-uterine growth-restricted neonates. Paediatr Int Child Health 2014;34(3):189–193. DOI: 10.1179/2046905514Y.0000000124.
McMenamin JB, Volpe JJ. Doppler ultrasonography in the determination of neonatal brain death. Ann Neurol 1983;14(3): 302–307. DOI: 10.1002/ana.410140308.
Ojala T, Kääpä P, Helenius H, et al. Low cerebral blood flow resistance in nonventilated preterm infants predicts poor neurologic outcome. Pediatr Crit Care Med 2004;5(3):264–268. DOI: 10.1097/01.pcc.0000112368.32965.45.
van Bel F, den Ouden L, van de Bor M, et al. Cerebral blood-flow velocity during the first week of life of preterm infants and neurodevelopment at two years. Dev Med Child Neurol 1989;31(3):320–328. DOI: 10.1111/j.1469-8749.1989.tb04001.x.