Newborn

Register      Login

VOLUME 2 , ISSUE 2 ( April-June, 2023 ) > List of Articles

REVIEW ARTICLE

Neurological Manifestations of Perinatal Dengue

Jubara Alallah, Astha Amrit, Suresh Boppana

Keywords : Antibody-dependent enhancement, Congenital dengue, Dengue encephalitis, IgM:IgG ratio, Neonate, Neurotropism, NS1Ag, CYD-TDV (Dengvaxia), TAK-003, Vertical transmission

Citation Information : Alallah J, Amrit A, Boppana S. Neurological Manifestations of Perinatal Dengue. 2023; 2 (2):158-172.

DOI: 10.5005/jp-journals-11002-0066

License: CC BY-NC 4.0

Published Online: 05-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Dengue viruses (DENVs) are single-stranded RNA viruses belonging to the family Flaviviridae. There are four distinct antigenically related serotypes, DENVs types 1, 2, 3, and 4. These are all mosquito-borne human pathogens. Congenital dengue disease occurs when there is mother-to-fetus transmission of the virus and should be suspected in endemic regions in neonates presenting with fever, maculopapular rash, and thrombocytopenia. Although most of the infected infants remain asymptomatic, some can develop clinical manifestations such as sepsis-like illness, gastric bleeding, circulatory failure, and death. Neurological manifestations include intracerebral hemorrhages, neurological malformations, and acute focal/disseminated encephalitis/encephalomyelitis. Dengue NS1Ag, a highly conserved glycoprotein, can help the detection of cases in the viremic stage. We do not have proven specific therapies yet; management is largely supportive and is focused on close monitoring and maintaining adequate intravascular volume.


HTML PDF Share
  1. Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990;3(4):376–396. DOI: 10.1128/CMR.3.4.376.
  2. Wilder–Smith A, Schwartz E. Dengue in travelers. N Engl J Med 2005;353(9):924–932. DOI: 10.1056/NEJMRA041927.
  3. Andrade EHP, Figueiredo LB, Vilela APP, et al. Spatial–temporal co-circulation of dengue virus 1, 2, 3, and 4 associated with coinfection cases in a hyperendemic area of Brazil: A 4-week survey. Am J Trop Med Hyg 2016;94(5):1080. DOI: 10.4269/AJTMH.15-0892.
  4. Martina BEE, Koraka P, Osterhaus ADME. Dengue virus pathogenesis: An integrated view. Clin Microbiol Rev 2009;22(4):564–581. DOI: 10.1128/CMR.00035-09.
  5. Paixão ES, Teixeira MG, Costa M da CN, et al. Dengue during pregnancy and adverse fetal outcomes: A systematic review and meta-analysis. Lancet Infect Dis 2016;16(7):857–865. DOI: 10.1016/S1473-3099(16)00088-8.
  6. Ribeiro CF, Lopes VGS, Brasil P, et al. Dengue infection in pregnancy and its impact on the placenta. Int J Infect Dis 2017;55:109–112. DOI: 10.1016/J.IJID.2017.01.002.
  7. Lok SM. The interplay of dengue virus morphological diversity and human antibodies. Trends Microbiol 2016;24(4):284–293. DOI: 10.1016/J.TIM.2015.12.004.
  8. Byk LA, Gamarnik AV. Properties and functions of the dengue virus capsid protein. Annu Rev Virol 2016;3(1):263–281. DOI: 10.1146/ANNUREV-VIROLOGY-110615-042334.
  9. Modis Y, Ogata S, Clements D, et al. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 2003;100(12):6986–6991. DOI: 10.1073/PNAS.0832193100.
  10. Modis Y, Ogata S, Clements D, et al. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004;427(6972):313–319. DOI: 10.1038/NATURE02165.
  11. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 2005;3(1):13–22. DOI: 10.1038/NRMICRO1067.
  12. Chen Y, Maguire T, Hileman RE, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 1997;3(8):866–871. DOI: 10.1038/NM0897-866.
  13. Tassaneetrithep B, Burgess TH, Granelli–Piperno A, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003;197(7):823–829. DOI: 10.1084/JEM.20021840.
  14. Chen ST, Lin YL, Huang MT, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature.2008;453(7195):672–676. DOI: 10.1038/NATURE07013.
  15. Wang A, Thurmond S, Islas L, et al. Zika virus genome biology and molecular pathogenesis. Emerg Microbes Infect 2017;6(3):e13. DOI: 10.1038/EMI.2016.141.
  16. Lin KH, Ali A, Rusere L, et al. Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J Virol 2017;91(10). DOI: 10.1128/JVI.00045-17.
  17. Nascimento IJ dos S, Santos–Júnior PF da S, de Aquino TM, et al. Insights on dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021;224:113698. DOI: 10.1016/J.EJMECH.2021.113698.
  18. Murugesan A, Manoharan M. Dengue virus. Emerging Reemerging Viral Pathogens 2020:1(16):281–359. DOI: 10.1016/B978-0-12-819400-3.00016-8.
  19. Chan M, Johansson MA. The incubation periods of dengue viruses. PLoS One 2012;7(11):50972. DOI: 10.1371/JOURNAL.PONE.0050972.
  20. Machado CR, Machado ES, Denis Rohloff R, et al. Is pregnancy associated with severe dengue? A review of data from the Rio de Janeiro surveillance information system. PLoS Negl Trop Dis 2013;7(5):e2217. DOI: 10.1371/JOURNAL.PNTD.0002217.
  21. Caron M, Paupy C, Grard G, et al. Recent introduction and rapid dissemination of chikungunya virus and Dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clin Infect Dis 2012;55(6). DOI: 10.1093/CID/CIS530.
  22. Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol 2004;18(3):215–227. DOI: 10.1111/J.0269-283X.2004.00513.X.
  23. Centers for Disease Control (CDC). Update: Aedes albopictus infestation – United States, Mexico. MMWR Morb Mortal Wkly Rep 1989;38(25):440, 445–446. PMID: 2499758.
  24. Li HH, He ZJ, Xie LM, et al. A challenge for a unique dengue vector control programme: Assessment of the spatial variation of insecticide resistance status amongst Aedes aegypti and Aedes albopictus populations in Gampaha District, Sri Lanka. Biomed Res Int 2021;2021. DOI: 10.1155/2021/6619175.
  25. World Health Organization. Dengue Bulletin, Vol. 41. Available at: https://www.who.int/publications/i/item/ISSN-0250-8362. Accessed on: 15 December 2022.
  26. Garg S, Chakravarti A, Singh R, et al. Dengue serotype-specific seroprevalence among 5- to 10-year-old children in India: A community-based cross-sectional study. Int J Infect Dis 2017;54:25–30. DOI: 10.1016/J.IJID.2016.10.030.
  27. Wartel TA, Prayitno A, Hadinegoro SRS, et al. Three decades of dengue surveillance in five highly endemic South East Asian countries. Asia Pac J Public Health 2017;29(1):7–16. DOI: 10.1177/1010539516675701.
  28. Mackenzie JS, Broom AK, Hall RA, et al. Arboviruses in the Australian region, 1990 to 1998. Commun Dis Intell 1998;22(6):93–100. PMID: 9648365.
  29. Amarasinghe A, Kuritsky JN, Letson GW, et al. Dengue virus infection in Africa. Emerg Infect Dis 2011;17(8):1349–1354. DOI: 10.3201/EID1708.101515.
  30. Messina JP, Brady OJ, Pigott DM, et al. A global compendium of human dengue virus occurrence. Sci Data 2014;1:140004. DOI: 10.1038/SDATA.2014.4.
  31. Humphrey JM, Cleton NB, Reusken CBEM, et al. Dengue in the Middle East and North Africa: A systematic review. PLoS Negl Trop Dis 2016;10(12):e0005194. DOI: 10.1371/JOURNAL.PNTD.0005194.
  32. Sharp TM, Morris S, Morrison A, et al. Fatal dengue acquired in Florida. N Engl J Med 2021;384(23):2257–2259. DOI: 10.1056/NEJMC2023298.
  33. Schaffner F, Medlock JM, van Bortel W. Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect 2013;19(8):685–692. DOI: 10.1111/1469-0691.12189.
  34. Mondal N. The resurgence of dengue epidemic and climate change in India. Lancet 2023;401(10378):727–728. DOI: 10.1016/S0140-6736(23)00226-X.
  35. McBride WJH, Mullner H, Labrooy JT, et al. The 1993 dengue 2 epidemic in North Queensland: A serosurvey and comparison of hemagglutination inhibition with an ELISA. Am J Trop Med Hyg 1998;59(3):457–461. DOI: 10.4269/AJTMH.1998.59.457.
  36. Endy TP, Nisalak A, Chunsuttiwat S, et al. Spatial and temporal circulation of dengue virus serotypes: A prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 2002;156(1):52–59. DOI: 10.1093/AJE/KWF006.
  37. Tantawichien T. Dengue fever and dengue haemorrhagic fever in adolescents and adults. Paediatr Int Child Health 2012;32(s1):22–27. DOI: 10.1179/2046904712Z.00000000049.
  38. Gubler DJ. Epidemic dengue/dengue hemorrhagic fever: A global public health problem in the 21st century. Trends Microbiol 2002;10(2):100–103. DOI: 10.1016/s0966-842x(01)02288-0.
  39. Hales S, de Wet N, Maindonald J, et al. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet 2002;360(9336):830–834. DOI: 10.1016/S0140-6736(02)09964-6.
  40. Jetten TH, Focks DA. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 1997;57(3):285–297. DOI: 10.4269/AJTMH.1997.57.285.
  41. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998;11(3):480–496. DOI: 10.1128/CMR.11.3.480.
  42. Hales S, Weinstein P, Woodward A. Dengue fever epidemics in the South Pacific: Driven by El Niño Southern Oscillation? Lancet 1996;348(9042):1664–1665. DOI: 10.1016/S0140-6736(05)65737-6.
  43. Sirinavin S, Nuntnarumit P, Supapannachart S, et al. Vertical dengue infection: case reports and review. Pediatr Infect Dis J 2004;23(11):1042–1047. DOI: 10.1097/01.INF.0000143644.95692.0E.
  44. Pouliot SH, Xiong X, Harville E, et al. Maternal dengue and pregnancy outcomes: A systematic review. Obstet Gynecol Surv 2010;65(2):107–118. DOI: 10.1097/OGX.0b013e3181cb8fbc.
  45. Guzman MG, Halstead SB, Artsob H, et al. Dengue: A continuing global threat. Nat Rev Microbiol 2010;8(Suppl. 12):S7–S16. DOI: 10.1038/NRMICRO2460.
  46. Basurko C, Matheus S, Hildéral H, et al. Estimating the risk of vertical transmission of dengue: A prospective study. Am J Trop Med Hyg 2018;98(6):1826–1832. DOI: 10.4269/AJTMH.16-0794.
  47. Carroll ID, Toovey S, Van Gompel A. Dengue fever and pregnancy: A review and comment. Travel Med Infect Dis 2007;5(3):183–188. DOI: 10.1016/J.TMAID.2006.11.002.
  48. Fernández R, Rodríguez T, Borbonet F, et al. Study of the relationship dengue-pregnancy in a group of cuban-mothers. Rev Cubana Med Trop 1994;46(2):76–78.
  49. Carles G, Peiffer H, Talarmin A. Effects of dengue fever during pregnancy in French Guiana. Clin Infect Dis 1999;28(3):637–640. DOI: 10.1086/515144.
  50. Thomas J, Thomas P, George CR. Neonatal dengue. Int J Contemp Pediatrics 2017;4(6):2234–2236. DOI: 10.18203/2349-3291.IJCP20174765.
  51. Tan PC, Rajasingam G, Devi S, et al. Dengue infection in pregnancy: Prevalence, vertical transmission, and pregnancy outcome. Obstet Gynecol 2008;111(5):1111–1117. DOI: 10.1097/AOG.0b013e31816a49fc.
  52. Barthel A, Gourinat AC, Cazorla C, et al. Breast milk as a possible route of vertical transmission of dengue virus? Clin Infect Dis 2013;57(3):415–417. DOI: 10.1093/CID/CIT227.
  53. Phongsamart W, Yoksan S, Vanaprapa N, et al. Dengue virus infection in late pregnancy and transmission to the infants. Pediatr Infect Dis J 2008;27(6):500–504. DOI: 10.1097/INF.0B013E318167917A.
  54. Nisalak A, Endy TP, Nimmannitya S, et al. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 2003;68(2):191–202. PMID: 12641411.
  55. Brar R, Sikka P, Suri V, et al. Maternal and fetal outcomes of dengue fever in pregnancy: a large prospective and descriptive observational study. Arch Gynecol Obstet 2021;304(1):91–100. DOI: 10.1007/S00404-020-05930-7.
  56. World Health Organization. Dengue and severe dengue. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed on: 9 June 2023.
  57. Xiong YQ, Mo Y, Shi TL, et al. Dengue virus infection during pregnancy increased the risk of adverse fetal outcomes? An updated meta-analysis. J Clin Virol 2017;94:42–49. DOI: 10.1016/J.JCV.2017.07.008.
  58. Katzelnick LC, Montoya M, Gresh L, et al. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Natl Acad Sci USA 2016;113(3):728–733. DOI: 10.1073/PNAS.1522136113/SUPPL_FILE/PNAS.1522136113.SAPP.PDF.
  59. Chao CH, Wu WC, Lai YC, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog 2019;15(4):e1007625. DOI: 10.1371/JOURNAL.PPAT.1007625.
  60. Alallah J, Mohtisham F, Saidi N, et al. Congenital dengue in a Saudi neonate: A case report. J Neonatal Perinatal Med 2020;13(2):279–282. DOI: 10.3233/NPM-190286.
  61. Xu M, Züst R, Toh YX, et al. Protective capacity of the human anamnestic antibody response during acute dengue virus infection. J Virol 2016;90(24):11122. DOI: 10.1128/JVI.01096-16.
  62. Changal KH, Raina AH, Raina A, et al. Differentiating secondary from primary dengue using IgG to IgM ratio in early dengue: An observational hospital based clinico–serological study from North India. BMC Infect Dis 2016;16(1):715. DOI: 10.1186/S12879-016-2053-6.
  63. Moi ML, Ami Y, Shirai K, et al. Formation of infectious dengue virus–antibody immune complex in vivo in marmosets (Callithrix jacchus) after passive transfer of anti-dengue virus monoclonal antibodies and infection with dengue virus. Am J Trop Med Hyg 2015;92(2):370. DOI: 10.4269/AJTMH.14-0455.
  64. Murthy JMK. Neurological complications of dengue infection. Neurol India 2010;58(4):581–584. DOI: 10.4103/0028-3886.68654.
  65. Begum F, Das S, Mukherjee D, et al. Insight into the tropism of dengue virus in humans. Viruses 2019;11(12):1136. DOI: 10.3390/V11121136.
  66. Lanteri MC, Busch MP. Dengue in the context of “safe blood” and global epidemiology: To screen or not to screen? Transfusion (Paris) 2012;52(8):1634–1639. DOI: 10.1111/J.1537-2995.2012.03747.X.
  67. Guzman MG, Harris E. Dengue. Lancet 2015;385(9966):453–465. DOI: 10.1016/S0140-6736(14)60572-9.
  68. Calderón–Peláez MA, Velandia–Romero ML, Bastidas–Legarda LY, et al. Dengue virus infection of blood–brain barrier cells: Consequences of severe disease. Front Microbiol 2019;10:1435. DOI: 10.3389/FMICB.2019.01435.
  69. Miner JJ, Diamond MS. Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier. Curr Opin Immunol 2016;38:18–23. DOI: 10.1016/J.COI.2015.10.008.
  70. Tohidpour A, Morgun AV, Boitsova EB, et al. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol 2017;7:276. DOI: 10.3389/FCIMB.2017.00276/BIBTEX.
  71. Velandia–Romero ML, Acosta–Losada O, Castellanos JE. In vivo infection by a neuroinvasive neurovirulent dengue virus. J Neurovirol 2012;18(5):374–387. DOI: 10.1007/S13365-012-0117-Y.
  72. Cardier JE, Rivas B, Romano E, et al. Evidence of vascular damage in dengue disease: Demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 2009;13(5):335–340. DOI: 10.1080/10623320600972135.
  73. Soe HJ, Khan AM, Manikam R, et al. High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 2017;98(12):2993–3007. DOI: 10.1099/jgv.0.000981.
  74. Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral Res 2014;109(1):160–170. DOI: 10.1016/j.antiviral.2014.07.005.
  75. Roach T, Alcendor DJ. Zika virus infection of cellular components of the blood-retinal barriers: Implications for viral associated congenital ocular disease. J Neuroinflammation 2017;14(1):43. DOI: 10.1186/S12974-017-0824-7.
  76. Carr JM, Ashander LM, Calvert JK, et al. Molecular responses of human retinal cells to infection with dengue virus. Mediators Inflamm 2017;2017:3164375. DOI: 10.1155/2017/3164375.
  77. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006;7(1):41–53. DOI: 10.1038/nrn1824.
  78. Perea G, Navarrete M, Araque A. Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci 2009;32(8):421–431. DOI: 10.1016/j.tins.2009.05.001.
  79. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol 2011;93(3):421–443. DOI: 10.1016/j.pneurobio.2011.01.005.
  80. White RE, Jakeman LB. Don't fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair. Restor Neurol Neurosci 2008;26(2–3):197–214. PMID: 18820411.
  81. Boonnak K, Dambach KM, Donofrio GC, et al. Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J Virol 2011;85(4):1671–1683. DOI: 10.1128/JVI.00220-10.
  82. Burkert K, Moodley K, Angel CE, et al. Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem Int 2012;60(6):573–580. DOI:10.1016/J.NEUINT.2011.09.002.
  83. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000;25(9–10):1439–1451. DOI: 10.1023/A:1007677003387.
  84. Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: Molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 2010;79(2):77–89. DOI: 10.1016/J.BCP.2009.09.014.
  85. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009;32(12):638–647. DOI: 10.1016/J.TINS.2009.08.002.
  86. Cam BV, Fonsmark L, Hue NB, et al. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001;65(6):848–851. DOI: 10.4269/AJTMH.2001.65.848.
  87. Hendarto SK, Hadinegoro R. Dengue encephalopathy. Acta Paediatr Jpn 1992;34(3):350–357. DOI: 10.1111/J.1442-200X.1992.TB00971.X.
  88. Mehta VK, Verma R, Garg RK, et al. Study of interleukin-6 and interleukin-8 levels in patients with neurological manifestations of dengue. J Postgrad Med 2017;63(1):11–15. DOI: 10.4103/0022-3859.188545.
  89. Bhatt RS, Kothari ST, Gohil DJ, et al. Novel evidence of microglial immune response in impairment of dengue infection of CNS. Immunobiology 2015;220(10):1170–1176. DOI: 10.1016/J.IMBIO.2015.06.002.
  90. Olagnier D, Peri S, Steel C, et al. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 2014;10(12):e1004566. DOI: 10.1371/JOURNAL.PPAT.1004566.
  91. Gupta S, Choudhury V, Gupta NP, et al. Congenital dengue in neonate. Clin Case Rep 2020;9(2):704–706. DOI: 10.1002/CCR3.3627.
  92. Ribeiro CF, Lopes VGS, Brasil P, et al. Dengue during pregnancy: Association with low birth weight and prematurity. Rev Inst Med Trop Sao Paulo 2016;58(1):1–3. DOI: 10.1590/S1678-9946201658008.
  93. Friedman EE, Dallah F, Harville EW, et al. Symptomatic dengue infection during pregnancy and infant outcomes: A retrospective cohort study. PLoS Negl Trop Dis 2014;8(10):e3226. DOI: 10.1371/JOURNAL.PNTD.0003226.
  94. Huits R, Soentjens P, Maniewski–Kelner U, et al. Clinical utility of the nonstructural 1 antigen rapid diagnostic test in the management of dengue in returning travelers with fever. Open Forum Infect Dis 2017;4(1):ofw273. DOI: 10.1093/OFID/OFW273.
  95. Janjindamai W, Pruekprasert P. Perinatal dengue infection: A case report and review of literature. Southeast Asian J Trop Med Public Health 2003;34(4):793–796. PMID: 15115089.
  96. Chau TNB, Anders KL, Lien LB, et al. Clinical and virological features of dengue in Vietnamese infants. PLoS Negl Trop Dis 2010;4(4):e657. DOI: 10.1371/JOURNAL.PNTD.0000657.
  97. Jain A, Chaturvedi UC. Dengue in infants: An overview. FEMS Immunol Med Microbiol 2010;59(2):119–130. DOI: 10.1111/J.1574-695X.2010.00670.X.
  98. Hammond SN, Balmaseda A, Pérez L, et al. Differences in dengue severity in infants, children, and adults in a 3-year hospital-based study in Nicaragua. Am J Trop Med Hyg 2005;73(6):1063–1070.
  99. Dewan N, Zuluaga D, Osorio L, et al. Ultrasound in dengue: A scoping review. Am J Trop Med Hyg 2021;104(3):826–835. DOI: 10.4269/AJTMH.20-0103.
  100. Agrawal P, Garg R, Srivastava S, et al. Pregnancy outcome in women with dengue infection in Northern India. Ind J Clin Pract 2014;24(11):1053–1055. DOI: 10.18203/2320-1770.ijrcog20200576.
  101. Srikiatkhachorn A, Mathew A, Rothman AL. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol 2017;39(5):563–574. DOI: 10.1007/S00281-017-0625-1.
  102. Kuczera D, Assolini JP, Tomiotto–Pellissier F, et al. Highlights for dengue immunopathogenesis: Antibody-dependent enhancement, cytokine storm, and beyond. J Interferon Cytokine Res 2018;38(2):69–80. DOI: 10.1089/JIR.2017.0037.
  103. Paixão ES, Teixeira MG, Costa M da CN, et al. Symptomatic dengue during pregnancy and congenital neurologic nalformations. Emerg Infect Dis 2018;24(9):1748–1750. DOI: 10.3201/EID2409.170361.
  104. Hung LP, Nghi TD, Anh NH, et al. Case report: Postpartum hemorrhage associated with dengue with warning signs in a term pregnancy and delivery. F1000Res 2015;4:1483. DOI: 10.12688/F1000RESEARCH.7589.1.
  105. Rothman AL. Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 2011;11(8):532–543. DOI: 10.1038/NRI3014.
  106. World Health Organixzation. National guidelines for clinical management of dengue fever. Available at: https://apps.who.int/iris/handle/10665/208893. Accessed on: 18 December 2022.
  107. Kumar R, Tripathi S, Tambe JJ, et al. Dengue encephalopathy in children in Northern India: Clinical features and comparison with non dengue. J Neurol Sci 2008;269(1–2):41–48. DOI: 10.1016/J.JNS.2007.12.018.
  108. Swaminathan A, Kirupanandhan S, Rathnavelu E. Case report: Challenges in a unique presentation of congenital dengue with congenital heart disease. BMJ Case Rep 2019;12(6). DOI: 10.1136/BCR-2018-228855.
  109. Prompetchara E, Ketloy C, Thomas SJ, et al. Dengue vaccine: Global development update. Asian Pac J Allergy Immunol 2020;38(3):178–185. DOI: 10.12932/AP-100518-0309.
  110. Nguyen TM, Huan VT, Reda A, et al. Clinical features and outcomes of neonatal dengue at the Children's Hospital 1, Ho Chi Minh, Vietnam. J Clin Virol 2021;138:104758. DOI: 10.1016/J.JCV.2021.104758.
  111. Thomas SJ, Rothman AL. Trials and tribulations on the path to developing a dengue vaccine. Vaccine 2015;33(Suppl. 4):D24–D31. DOI: 10.1016/J.VACCINE.2015.05.095.
  112. Precioso AR, Palacios R, Thomé B, et al. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine. Vaccine 2015;33(50):7121–7125. DOI: 10.1016/J.VACCINE.2015.09.105.
  113. Basurko C, Everhard S, Matheus S, et al. A prospective matched study on symptomatic dengue in pregnancy. PLoS One 2018;13(10):e0202005. DOI: 10.1371/JOURNAL.PONE.0202005.
  114. Vouga M, Chiu YC, Pomar L, et al. Dengue, Zika and chikungunya during pregnancy: Pre- and post-travel advice and clinical management. J Travel Med 2019;26(8):taz077. DOI: 10.1093/JTM/TAZ077.
  115. Vázquez S, Lemos G, Pupo M, et al. Diagnosis of dengue virus infection by the visual and simple AuBioDOT immunoglobulin M capture system. Clin Diagn Lab Immunol 2003;10(6):1074–1077. DOI: 10.1128/CDLI.10.6.1074-1077.2003.
  116. Wang SM, Sekaran SD. Early diagnosis of dengue infection using a commercial dengue duo rapid test kit for the detection of NS1, IGM, and IGG. Am J Trop Med Hyg 2010;83(3):690–695. DOI: 10.4269/AJTMH.2010.10-0117.
  117. Centers for Disease Control and Prevention. Serologic tests for dengue virus. Available at: https://www.cdc.gov/dengue/healthcare-providers/testing/serologic-tests.html. Accessed on: 9 June 2023.
  118. Lukman N, Salim G, Kosasih H, et al. Comparison of the hemagglutination inhibition Test and IgG ELISA in Categorizing Primary and Secondary Dengue Infections Based on the Plaque Reduction Neutralization Test. Biomed Res Int 2016;2016:5253842. DOI: 10.1155/2016/5253842.
  119. Tesh RB. A method for the isolation and identification of dengue viruses, using mosquito cell cultures. Am J Trop Med Hyg 1979;28(6):1053–1059. DOI: 10.4269/AJTMH.1979.28.1053.
  120. Muller DA, Depelsenaire ACI, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis 2017;215(Suppl. 2):S89–S95. DOI: 10.1093/INFDIS/JIW649.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.