Newborn

Register      Login

VOLUME 2 , ISSUE 2 ( April-June, 2023 ) > List of Articles

REVIEW ARTICLE

Importance of Neuroimaging in Infants with Microcephaly

Sabrina Rangwani, Gunes Orman, Maroun Mhanna, Thierry AGM Huisman

Keywords : Aminoacylase-2, Apert, Brain volume, Brain volume loss, Canavan's disease, Cavum septum pellucidum, child abuse, Crouzon, cytomegalovirus, Ex vacuo enlargement of ventricles, Head circumference, Meckel-Gruber syndrome, Melting brain, near-drowning, Neuroimaging, Skull deformities, Thalami, TORCH, Toxoplasma gondii, Trisomy 13, Trisomy 18, Trisomy 21, Twin-to-twin transfusion syndrome, Vein of Galen aneurysmal malformation, Zika virus, Zika

Citation Information : Rangwani S, Orman G, Mhanna M, Huisman TA. Importance of Neuroimaging in Infants with Microcephaly. 2023; 2 (2):148-157.

DOI: 10.5005/jp-journals-11002-0065

License: CC BY-NC 4.0

Published Online: 05-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Microcephaly is diagnosed in infants and children with a head circumference (HC) 2 standard deviations less than average, accounting for age and gender. There is not a standard method of diagnosis, as growth charts vary by country and methodology used. The most popular method of diagnosis is the use of a tape to measure a child's head. There are various conundrums that affect diagnoses: volume of the brain, deformities in skull shape that affect size measurements, and the etiology of microcephaly. The size of the skull is not the most important factor in diagnosing microcephaly, but rather the volume of the brain. Finally, a distinction between primary and secondary microcephaly must be made; primary microcephaly develops prenatally, and secondary microcephaly develops postnatally. The effects of primary microcephaly are generally more severe, but through imaging, it can be detected before birth. This article analyzes various conditions in which neuroimaging can add considerable information to current methods of clinical evaluation. There is a clear need for a multifaceted approach.


HTML PDF Share
  1. Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip Rev Dev Biol 2013;2(4):461–478. DOI: 10.1002/wdev.89.
  2. von der Hagen M, Pivarcsi M, Liebe J, et al. Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 2014;56(8):732–741. DOI: 10.1111/dmcn.12425.
  3. Opitz JM, Holt MC. Microcephaly: General considerations and aids to nosology. J Craniofac Genet Dev Biol 1990;10(2):175–204. PMID: 2211965.
  4. Baxter PS, Rigby AS, Rotsaert MH, et al. Acquired microcephaly: causes, patterns, motor and IQ effects, and associated growth changes. Pediatrics 2009;124(2):590–595. DOI: 10.1542/peds.2008-2784.
  5. Asif M, Abdullah U, Nurnberg P, Tinschert S, Hussain MS. Congenital microcephaly: a debate on diagnostic challenges and etiological paradigm of the shift from isolated/non-syndromic to syndromic microcephaly. Cells 2023;12(4). DOI: 10.3390/cells12040642.
  6. Harris SR. Measuring head circumference: update on infant microcephaly. Can Fam Physician 2015;61(8):680–684. PMID: 26505062.
  7. DeSilva M, Munoz FM, Sell E, et al. Congenital microcephaly: case definition and guidelines for data collection, analysis, and presentation of safety data after maternal immunisation. Vaccine 2017;35(48 Pt A):6472–6482. DOI: 10.1016/j.vaccine.2017.01.044.
  8. Shen S, Xiao W, Zhang L, et al. Prevalence of congenital microcephaly and its risk factors in an area at risk of Zika outbreaks. BMC Pregnancy Childbirth 17 2021;21(1):214. DOI: 10.1186/s12884-021-03705-9.
  9. Apostolova LG, Babakchanian S, Hwang KS, et al. Ventricular enlargement and its clinical correlates in the imaging cohort from the ADCS MCI donepezil/vitamin E study. Alzheimer Dis Assoc Disord 2013;27(2):174–181. DOI: 10.1097/WAD.0b013e3182677b3d.
  10. Marengo LK, Archer N, Shumate C, et al. Survival of infants and children born with severe microcephaly, Texas, 1999–2015. Birth Defects Res 2023;115(1):26–42. DOI: 10.1002/bdr2.2109.
  11. Kawasaki Y, Yoshida T, Matsui M, et al. Clinical factors that affect the relationship between head circumference and brain volume in very-low-birth-weight infants. J Neuroimaging 2019;29(1):104–110. DOI: 10.1111/jon.12558.
  12. Treit S, Zhou D, Chudley AE, et al. Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PLoS One 2016;11(2):e0150370. DOI: 10.1371/journal.pone.0150370.
  13. Lee JJ, McGue M, Iacono WG, et al. The causal influence of brain size on human intelligence: evidence from within-family phenotypic associations and GWAS modeling. Intelligence 2019;75:48–58. DOI: 10.1016/j.intell.2019.01.011.
  14. Martini M, Klausing A, Luchters G, et al. Head circumference – a useful single parameter for skull volume development in cranial growth analysis? Head Face Med 2018;14(1):3. DOI: 10.1186/s13005-017-0159-8.
  15. Bartholomeusz HH, Courchesne E, Karns CM. Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics 2002;33(5):239–241. DOI: 10.1055/s-2002-36735.
  16. Cheong JL, Hunt RW, Anderson PJ, et al. Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics 2008;121(6):e1534–1540. DOI: 10.1542/peds.2007–2671.
  17. Oyedeji GA, Olamijulo SK, Osinaike AI, et al. Head circumference of rural Nigerian children--the effect of malnutrition on brain growth. Cent Afr J Med 1997;43(9):264–268. PMID: 9509647.
  18. Catena A, Martinez-Zaldivar C, Diaz-Piedra C, et al. On the relationship between head circumference, brain size, prenatal long-chain PUFA/5-methyltetrahydrofolate supplementation and cognitive abilities during childhood. Br J Nutr 2019;122(s1):S40–S48. DOI: 10.1017/S0007114516004281.
  19. Kim M, Park SW, Lee JY, et al. Differences in brain morphology between hydrocephalus ex vacuo and idiopathic normal pressure hydrocephalus. Psychiatry Investig 2021;18(7):628–635. DOI: 10.30773/pi.2020.0352.
  20. Kitagaki H, Mori E, Ishii K, et al. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 1998;19(7):1277–1284. PMID: 9726467.
  21. Natale V, Rajagopalan A. Worldwide variation in human growth and the World Health Organization growth standards: a systematic review. BMJ Open 2014;4(1):e003735. DOI: 10.1136/bmjopen-2013-003735.
  22. Perez-Bermejo M, Alcala-Davalos L, Perez-Murillo J, et al. Are the growth standards of the World Health Organization valid for Spanish Children? The SONEV study. Front Pediatr 2021;9:700748. DOI: 10.3389/fped.2021.700748.
  23. Souza AI, de Siqueira MT, Ferreira A, et al. Geography of microcephaly in the Zika Era: a study of newborn distribution and socio-environmental indicators in Recife, Brazil, 2015–2016. Public Health Rep 2018;133(4):461–471. DOI: 10.1177/0033354918777256.
  24. Cole TJ. The development of growth references and growth charts. Ann Hum Biol 2012;39(5):382–394. DOI: 10.3109/03014460.2012.694475.
  25. Group WHOMGRS. Assessment of differences in linear growth among populations in the WHO multicentre growth reference study. Acta Paediatr Suppl 2006;450:56–65. DOI: 10.1111/j.1651-2227.2006.tb02376.x.
  26. Group WHOMGRS. Enrolment and baseline characteristics in the WHO multicentre growth reference study. Acta Paediatr Suppl 2006;450:7–15. DOI: 10.1111/j.1651-2227.2006.tb02371.x.
  27. Prakash NS, Mabry RM, Mohamed AJ, et al. Implementation of the WHO multicentre growth reference study in Oman. Food Nutr Bull 2004;25(1 Suppl):S78–S83. DOI: 10.1177/15648265040251s111.
  28. Group WHOMGRS. Breastfeeding in the WHO multicentre growth reference study. Acta Paediatr Suppl 2006;450:16–26. DOI: 10.1111/j.1651-2227.2006.tb02372.x.
  29. Boghossian NS, Horbar JD, Murray JC, et al. Anthropometric charts for infants with trisomies 21, 18, or 13 born between 22 weeks gestation and term: the VON charts. Am J Med Genet A 2012;158A(2):322–332. DOI: 10.1002/ajmg.a.34423.
  30. Bertozzi A, Gazeta RE, Fajardo TCG, et al. Prevalence and diagnostic accuracy of microcephaly in a pediatric cohort in Brazil: a retrospective cross-sectional study. J Pediatr (Rio J) 2021;97(4):433–439. DOI: 10.1016/j.jped.2020.08.010.
  31. Boonsawat P, Joset P, Steindl K, et al. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med 2019;21(9):2043–2058. DOI: 10.1038/s41436-019-0464-7.
  32. Zaqout S, Kaindl AM. Autosomal recessive primary microcephaly: not just a small brain. Front Cell Dev Biol 2021;9:784700. DOI: 10.3389/fcell.2021.784700.
  33. Jean F, Stuart A, Tarailo-Graovac M. Dissecting the genetic and etiological causes of primary microcephaly. Front Neurol 2020;11:570830. DOI: 10.3389/fneur.2020.570830.
  34. Tavasoli AR, Memar EHE, Ashrafi MR, et al. Primary and secondary microcephaly, global developmental delay, and seizure in two siblings caused by a novel missense variant in the ZNF335 gene. J Mol Neurosci 2022;72(4):719–729. DOI: 10.1007/s12031-021-01955-y.
  35. Dupont C, Castellanos-Ryan N, Seguin JR, et al. The predictive value of head circumference growth during the first year of life on early child traits. Sci Rep 2018;8(1):9828. DOI: 10.1038/s41598-018-28165-8.
  36. Hanzlik E, Gigante J. Microcephaly. Children (Basel) 9 2017;4(6):47. DOI: 10.3390/children4060047.
  37. ML CL, Carvalho AL, Ventura PA, et al. Clinical, neuroimaging, and neurophysiological findings in children with microcephaly related to congenital Zika virus infection. Int J Environ Res Public Health 2019;16(3). DOI: 10.3390/ijerph16030309.
  38. Poretti A, Blaser SI, Lequin MH, et al. Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 2013;37(2):294–312. DOI: 10.1002/jmri.23693.
  39. Cashmore MT, McCann AJ, Wastling SJ, et al. Clinical quantitative MRI and the need for metrology. Br J Radiol 2021;94(1120):20201215. DOI: 10.1259/bjr.20201215
  40. Oishi K, Faria AV, Yoshida S, et al. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci 2013;31(7):512–524. DOI: 10.1016/j.ijdevneu.2013.06.004.
  41. Cauley KA, Hu Y, Fielden SW. Pediatric Head CT: automated quantitative analysis with quantile regression. AJNR Am J Neuroradiol. 2021;42(2):382–388. DOI: 10.3174/ajnr.A6885.
  42. Emerson RW, Adams C, Nishino T, et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med 2017;9(393): eaag2882. DOI: 10.1126/scitranslmed.aag2882.
  43. Ashwal S, Michelson D, Plawner L, et al. Practice parameter: Evaluation of the child with microcephaly (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2009;73(11):887–897. DOI: 10.1212/WNL.0b013e3181b783f7.
  44. Levin TL, Blumfield E. Imaging the infant or child with an abnormal head circumference. Pediatr Rev 2020;41(12):655–658. DOI: 10.1542/pir.2020-0083.
  45. Russell LJ, Weaver DD, Bull MJ, et al. In utero brain destruction resulting in collapse of the fetal skull, microcephaly, scalp rugae, and neurologic impairment: the fetal brain disruption sequence. Am J Med Genet 1984;17(2):509–521. DOI: 10.1002/ajmg.1320170213.
  46. Aggarwal N, Sharma GL. Fetal ultrasound parameters: reference values for a local perspective. Indian J Radiol Imaging 2020;30(2):149–155. DOI: 10.4103/ijri.IJRI_287_19.
  47. Yang C, Yang Z, Liao S, et al. A new approach to automatic measure fetal head circumference in ultrasound images using convolutional neural networks. Comput Biol Med 2022;147:105801. DOI: 10.1016/j.compbiomed.2022.105801.
  48. Zeng W, Luo J, Cheng J, et al. Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network. Med Phys 2022;49(8):5081–5092. DOI: 10.1002/mp.15700.
  49. Wang X, Wang W, Cai X. Automatic measurement of fetal head circumference using a novel GCN-assisted deep convolutional network. Comput Biol Med 2022;145:105515. DOI: 10.1016/j.compbiomed.2022.105515.
  50. Zeng Y, Tsui PH, Wu W, et al. Ultrasound image segmentation for automatic head circumference biometry using deeply supervised attention-gated V-Net. J Digit Imaging 2021;34(1):134–148. DOI: 10.1007/s10278-020-00410-5.
  51. Ghelich Oghli M, Shabanzadeh A, et al. Automatic fetal biometry prediction using a novel deep convolutional network architecture. Phys Med 2021;88:127–137. DOI: 10.1016/j.ejmp.2021.06.020.
  52. Li P, Zhao H, Liu P, Cao F. Automated measurement network for accurate segmentation and parameter modification in fetal head ultrasound images. Med Biol Eng Comput 2020;58(11):2879–2892. DOI: 10.1007/s11517-020-02242-5.
  53. Falco P, Gabrielli S, Visentin A, et al. Transabdominal sonography of the cavum septum pellucidum in normal fetuses in the second and third trimesters of pregnancy. Ultrasound Obstet Gynecol 2000;16(6):549–553. DOI: 10.1046/j.1469-0705.2000.00244.x.
  54. Serhatlioglu S, Kocakoc E, Kiris A, et al. Sonographic measurement of the fetal cerebellum, cisterna magna, and cavum septum pellucidum in normal fetuses in the second and third trimesters of pregnancy. J Clin Ultrasound 2003;31(4):194–200. DOI: 10.1002/jcu.10163.
  55. Tao G, Lu G, Zhan X, et al. Sonographic appearance of the cavum septum pellucidum et vergae in normal fetuses in the second and third trimesters of pregnancy. J Clin Ultrasound 2013;41(9):525–531. DOI: 10.1002/jcu.22084.
  56. Ashrafunnessa, Jehan AH, Chowdhury SB, et al. Construction of fetal charts for biparietal diameter, fetal abdominal circumference and femur length in Bangladeshi population. Bangladesh Med Res Counc Bull 2003;29(2):67–77.PMID: 14674622.
  57. Dubiel M, Krajewski M, Pietryga M, et al. Fetal biometry between 20–42 weeks of gestation for Polish population. Ginekol Pol 2008;79(11):746–753. PMID: 19140496.
  58. Leung TN, Pang MW, Daljit SS, et al. Fetal biometry in ethnic Chinese: biparietal diameter, head circumference, abdominal circumference and femur length. Ultrasound Obstet Gynecol. Mar 2008;31(3):321–327. DOI: 10.1002/uog.5192.
  59. Sherer DM, Sokolovski M, Dalloul M, et al. Nomograms of the axial fetal cerebellar hemisphere circumference and area throughout gestation. Ultrasound Obstet Gynecol 2007;29(1):32–37. DOI: 10.1002/uog.3879.
  60. Johnsen SL, Wilsgaard T, Rasmussen S, et al. Longitudinal reference charts for growth of the fetal head, abdomen and femur. Eur J Obstet Gynecol Reprod Biol 2006;127(2):172–185. DOI: 10.1016/j.ejogrb.2005.10.004.
  61. Zaliunas B, Jakaite V, Kurmanavicius J, et al. Reference values of fetal ultrasound biometry: results of a prospective cohort study in Lithuania. Arch Gynecol Obstet 2022;306(5):1503–1517. DOI: 10.1007/s00404-022-06437-z.
  62. Terrin G, De Nardo MC, Boscarino G, et al. Early protein intake influences neonatal brain measurements in preterms: an observational study. Front Neurol 2020;11:885. DOI: 10.3389/fneur.2020.00885.
  63. Casadei K, Kiel J. Anthropometric Measurement. StatPearls Publishing; 2022. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. 2022 Sep 6. PMID: 30726000.
  64. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. DOI: 10.4137/CMPed.S40070.
  65. Bouthoorn SH, van Lenthe FJ, Hokken-Koelega AC, et al. Head circumference of infants born to mothers with different educational levels; the Generation R Study. PLoS One. 2012;7(6):e39798. DOI: 10.1371/journal.pone.0039798.
  66. Aggarwal A, Mittal H, Patil R, et al. Clinical profile of children with developmental delay and microcephaly. J Neurosci Rural Pract 2013;4(3):288–291. DOI: 10.4103/0976-3147.118781.
  67. Watemberg N, Silver S, Harel S, et al. Significance of microcephaly among children with developmental disabilities. J Child Neurol 2002;17(2):117–122. DOI: 10.1177/088307380201700205.
  68. Kempinska W, Korta K, Marchaj M, et al. Microcephaly in neurometabolic diseases. Children (Basel) 2022;9(1). DOI: 10.3390/children9010097.
  69. Becerra-Solano LE, Mateos-Sanchez L, et al. Microcephaly, an etiopathogenic vision. Pediatr Neonatol 2021;62(4):354–360. DOI: 10.1016/j.pedneo.2021.05.008.
  70. Mochida GH. Genetics and biology of microcephaly and lissencephaly. Semin Pediatr Neurol 2009;16(3):120–126. DOI: 10.1016/j.spen.2009.07.001.
  71. Picker-Minh S, Mignot C, Doummar D, et al. Phenotype variability of infantile-onset multisystem neurologic, endocrine, and pancreatic disease IMNEPD. Orphanet J Rare Dis 2016;11(1):52. DOI: 10.1186/s13023-016-0433-z.
  72. Rasika S, Passemard S, Verloes A, et al. Golgipathies in neurodevelopment: a new view of old defects. Dev Neurosci. 2018;40(5–6):396–416. DOI: 10.1159/000497035.
  73. Magini P, Smits DJ, Vandervore L, et al. Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Hum Genet 3 2019;105(4):689–705. DOI: 10.1016/j.ajhg.2019.08.006.
  74. Chograni M, Alkuraya FS, Maazoul F, et al. RGS6: a novel gene associated with congenital cataract, mental retardation, and microcephaly in a Tunisian family. Invest Ophthalmol Vis Sci 18 2014;56(2):1261–1266. DOI: 10.1167/iovs.14-15198.
  75. Bonthuis M, van Stralen KJ, Verrina E, et al. Use of national and international growth charts for studying height in European children: development of up-to-date European height-for-age charts. PLoS One. 2012;7(8):e42506. DOI: 10.1371/journal.pone.0042506.
  76. Yang Z, Duan Y, Ma G, et al. Comparison of the China growth charts with the WHO growth standards in assessing malnutrition of children. BMJ Open 25 2015;5(2):e006107. DOI: 10.1136/bmjopen-2014-006107.
  77. Elaabsi M, Loukid M, Lamtali S. Socio-economic and cultural determinants of mothers and fathers for low birth weight newborns in the region of Marrakech (Morocco): a case-control study. PLoS One 2022;17(6):e0269832. DOI: 10.1371/journal.pone.0269832.
  78. Morisaki N, Kawachi I, Oken E, et al. Social and anthropometric factors explaining racial/ethnical differences in birth weight in the United States. Sci Rep 21 2017;7:46657. DOI: 10.1038/srep46657.
  79. Bertapelli F, Agiovlasitis S, Machado MR, et al. Growth charts for Brazilian children with Down syndrome: birth to 20 years of age. J Epidemiol 2017;27(6):265–273. DOI: 10.1016/j.je.2016.06.009.
  80. Lindley AA, Benson JE, Grimes C, et al, 3rd edition, Herman AA. The relationship in neonates between clinically measured head circumference and brain volume estimated from head CT-scans. Early Hum Dev 1999;56(1):17–29. DOI: 10.1016/s0378-3782(99)00033-x.
  81. Miyabayashi H, Nagano N, Kato R, et al. Reference values for cranial morphology based on three-dimensional scan analysis in 1-month-old healthy infants in Japan. Neurol Med Chir (Tokyo) 15 2022;62(5):246–253. DOI: 10.2176/jns-nmc.2021-0384.
  82. Forsyth R, Kirkham F. Predicting outcome after childhood brain injury. CMAJ 7 2012;184(11):1257–1264. DOI: 10.1503/cmaj.111045.
  83. Khodarahmi I, Alizai H, Chalian M, et al. Imaging spectrum of calvarial abnormalities. Radiographics. 2021;41(4):1144–1163. DOI: 10.1148/rg.2021200198.
  84. Wang S, Fan P, Xiong D, et al. Assessment of neonatal brain volume and growth at different postmenstrual ages by conventional MRI. Medicine (Baltimore) 2018;97(31):e11633. DOI: 10.1097/MD.0000000000011633.
  85. Parikh NA, Lasky RE, Kennedy KA, et al. Perinatal factors and regional brain volume abnormalities at term in a cohort of extremely low birth weight infants. PLoS One. 2013;8(5):e62804. DOI: 10.1371/journal.pone.0062804.
  86. Xian Z, Fung SH, Nakawah MO. Obstructive hydrocephalus due to aqueductal stenosis from developmental venous anomaly draining bilateral medial thalami: a case report. Radiol Case Rep 2020;15(6):730–732. DOI: 10.1016/j.radcr.2020.02.014.
  87. Bass T, White LE, Wood RD, et al. Rapid decompression of congenital hydrocephalus associated with parenchymal hemorrhage. J Neuroimaging 1995;5(4):249–251. DOI: 10.1111/jon199554249.
  88. Wilkinson D. Ethical dilemmas in postnatal treatment of severe congenital hydrocephalus. Camb Q Healthc Ethics 2016;25(1):84–92. DOI: 10.1017/S0963180115000316.
  89. Nigri F, Gobbi GN, da Costa Ferreira Pinto PH, et al. Hydrocephalus caused by unilateral foramen of Monro obstruction: a review on terminology. Surg Neurol Int 2016;7(Suppl 12):S307–S313. DOI: 10.4103/2152-7806.182392.
  90. Lucey BP, March GP Jr., Hutchins GM. Marked calvarial thickening and dural changes following chronic ventricular shunting for shaken baby syndrome. Arch Pathol Lab Med 2003;127(1):94–97. DOI: 10.5858/2003-127-94-MCTADC.
  91. Ko JM. Genetic syndromes associated with craniosynostosis. J Korean Neurosurg Soc 2016;59(3):187–191. DOI: 10.3340/jkns.2016.59.3.187.
  92. Kabbani H, Raghuveer TS. Craniosynostosis. Am Fam Physician 2004;69(12):2863–2870. PMID: 15222651.
  93. Badve CA, K MM, Iyer RS, et al. Craniosynostosis: imaging review and primer on computed tomography. Pediatr Radiol 2013;43(6):728–742; quiz 725–727. DOI: 10.1007/s00247-013-2673-6.
  94. Kirmi O, Lo SJ, Johnson D, Anslow P. Craniosynostosis: a radiological and surgical perspective. Semin Ultrasound CT MR 2009;30(6):492–512. DOI: 10.1053/j.sult.2009.08.002.
  95. Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci 16 2018;19(3):123–137. DOI: 10.1038/nrn.2018.1.
  96. Zhou Y, Muller HG, Zhu C, et al. Network evolution of regional brain volumes in young children reflects neurocognitive scores and mother's education. Sci Rep 20 2023;13(1):2984. DOI: 10.1038/s41598-023-29797-1.
  97. Bokhari MR, Samanta D, Bokhari SRA. Canavan Disease. StatPearls. 2022. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. 2022 Sep 6. PMID: 28613566.
  98. Frenkel LD, Gomez F, Sabahi F. The pathogenesis of microcephaly resulting from congenital infections: why is my baby's head so small? Eur J Clin Microbiol Infect Dis 2018;37(2):209–226. DOI: 10.1007/s10096-017-3111-8.
  99. Borse V, Shanks AL. Twin-To-Twin Transfusion Syndrome. StatPearls. 2022. [updated 2022 Oct 10]. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. Available from https://www.ncbi.nlm.nih.gov/books/NBK563133
  100. Lewi L. Monochorionic diamniotic twin pregnancies pregnancy outcome, risk stratification and lessons learnt from placental examination. Verh K Acad Geneeskd Belg. 2010;72(1–2):5–15. PMID: 20726437.
  101. Lewi L, Deprest J, Hecher K. The vascular anastomoses in monochorionic twin pregnancies and their clinical consequences. Am J Obstet Gynecol 2013;208(1):19–30. DOI: 10.1016/j.ajog.2012.09.025.
  102. Bamberg C, Hecher K. Update on twin-to-twin transfusion syndrome. Best Pract Res Clin Obstet Gynaecol 2019;58:55–65. DOI: 10.1016/j.bpobgyn.2018.12.011.
  103. Bhat R. Twin to twin transfusion syndrome. Kathmandu Univ Med J (KUMJ). 2010;8(29):87–90. PMID: 21209514.
  104. Spruijt MS, Lopriore E, Tan R, et al. Long-term neurodevelopmental outcome in twin-to-twin transfusion syndrome: is there still room for improvement? J Clin Med 2019; 8(8):1226. DOI: 10.3390/jcm8081226.
  105. Li TG, Zhang YY, Nie F, et al. Diagnosis of foetal vein of galen aneurysmal malformation by ultrasound combined with magnetic resonance imaging: a case series. BMC Med Imaging 2020;20(1):63. DOI: 10.1186/s12880-020-00463-6.
  106. Saliou G, Vraka I, Teglas JP, et al. Pseudofeeders on fetal magnetic resonance imaging predict outcome in vein of Galen malformations. Ann Neurol 2017;81(2):278–286. DOI: 10.1002/ana.24873.
  107. Mir IN, Johnson-Welch SF, Nelson DB, et al. Placental pathology is associated with severity of neonatal encephalopathy and adverse developmental outcomes following hypothermia. Am J Obstet Gynecol 2015;213(6):849 e1–7. DOI: 10.1016/j.ajog.2015.09.072.
  108. Malaeb S, Dammann O. Fetal inflammatory response and brain injury in the preterm newborn. J Child Neurol 2009;24(9):1119–1126. DOI: 10.1177/0883073809338066.
  109. McElrath TF, Allred EN, Kuban K, et al. Factors associated with small head circumference at birth among infants born before the 28th week. Am J Obstet Gynecol 2010;203(2):138 e1–e8. DOI: 10.1016/j.ajog.2010.05.006.
  110. Leibovitz Z, Shiran C, Haratz K, et al. Application of a novel prenatal vertical cranial biometric measurement can improve accuracy of microcephaly diagnosis in utero. Ultrasound Obstet Gynecol 2016;47(5):593–599. DOI: 10.1002/uog.15886.
  111. Mercuri E, Ricci D, Cowan FM, et al. Head growth in infants with hypoxic-ischemic encephalopathy: correlation with neonatal magnetic resonance imaging. Pediatrics 2000;106(2 Pt 1):235–243. DOI: 10.1542/peds.106.2.235.
  112. Cordes I, Roland EH, Lupton BA, et al. Early prediction of the development of microcephaly after hypoxic-ischemic encephalopathy in the full-term newborn. Pediatrics 1994;93(5):703–707. PMID: 8165065.
  113. Suominen PK, Vahatalo R. Neurologic long term outcome after drowning in children. Scand J Trauma Resusc Emerg Med 2012;20:55. DOI: 10.1186/1757-7241-20-55.
  114. Ishaque M, Manning JH, Woolsey MD, et al. Functional integrity in children with anoxic brain injury from drowning. Hum Brain Mapp 2017;38(10):4813–4831. DOI: 10.1002/hbm.23745.
  115. Hung KL. Pediatric abusive head trauma. Biomed J 2020;43(3):240–250. DOI: 10.1016/j.bj.2020.03.008.
  116. Blumenthal I. Shaken baby syndrome. Postgrad Med J 2002;78(926):732–735. DOI: 10.1136/pmj.78.926.732.
  117. Naidich TP, Altman NR, Braffman BH, et al. Cephaloceles and related malformations. AJNR Am J Neuroradiol 1992;13(2):655–690. PMID: 1566723.
  118. Velho V, Naik H, Survashe P, et al. Management strategies of cranial encephaloceles: A neurosurgical challenge. Asian J Neurosurg 2019;14(3):718–724. DOI: 10.4103/ajns.AJNS_139_17.
  119. Hartill V, Szymanska K, Sharif SM, et al. Meckel-Gruber syndrome: an update on diagnosis, clinical management, and research advances. Front Pediatr 2017;5:244. DOI: 10.3389/fped.2017.00244.
  120. Fraser FC, Lytwyn A. Spectrum of anomalies in the Meckel syndrome, or: “Maybe there is a malformation syndrome with at least one constant anomaly”. Am J Med Genet 1981;9(1):67–73. DOI: 10.1002/ajmg.1320090112.
  121. Markovic I, Bosnjakovic P, Milenkovic Z. Occipital encephalocele: cause, incidence, neuroimaging and surgical management. Curr Pediatr Rev. 2020;16(3):200–205. DOI: 10.2174/1573396315666191018161535.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.