Newborn

Register      Login

VOLUME 2 , ISSUE 2 ( April-June, 2023 ) > List of Articles

ORIGINAL RESEARCH

Linked Th17 and Calgranulin Responses in Maternal-cord Blood Dyads of Preterm Gestations with Histologic Chorioamnionitis

Christopher Q Buchanan, Megan L Lawlor, Chukwuebuka Okafor, Shannon R Kurian, Andrea E Philip, Abigael E Finkle, Jay J McQuillan, Seema Haridas, Joyce M Koenig

Keywords : Fetal inflammation, Gamma–delta T cells, Maternal inflammation, S100, S100A8, S100A12, Treg cells

Citation Information : Buchanan CQ, Lawlor ML, Okafor C, Kurian SR, Philip AE, Finkle AE, McQuillan JJ, Haridas S, Koenig JM. Linked Th17 and Calgranulin Responses in Maternal-cord Blood Dyads of Preterm Gestations with Histologic Chorioamnionitis. 2023; 2 (2):133-141.

DOI: 10.5005/jp-journals-11002-0064

License: CC BY-NC 4.0

Published Online: 05-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Introduction: Maternal–fetal immune crosstalk mechanisms are increasingly identified in the pathogenesis of gestational disorders, including histologic chorioamnionitis (HCA). Although an inflammatory Th17 immune phenotype has been described in preterm neonates with HCA, the associated maternal Th17 response is relatively unknown. To refine our understanding of Th17 biology in this context, we examined Th17 responses in maternal-cord blood dyads of preterm gestations. Materials and methods: Paired maternal and cord blood (CB) samples were prospectively collected from preterm gestations (23–34 weeks) with HCA or controls. Th17-linked cell frequencies and plasma calgranulin (S100A8, S100A12) levels were determined by flow cytometry and enzyme-linked immunoassay, respectively. Results: Analyses of 47 maternal-cord blood pairs showed striking parallel increases in Th17 cell frequencies as well as plasma calgranulin levels in the presence of fetal inflammation. Cord blood S100A12 levels were directly correlated with Th17 cell frequencies. In CB cultures, rh-S100A12 promoted in vitro propagation of Th17-type CD4+ cells. Conclusions: Maternal and CB Th17-linked responses are dually amplified in gestations with HCA, supporting a biological role for maternal–fetal interactions in this disorder. In addition to advancing current knowledge of neonatal Th17 mechanisms, these data shed new light on their association with maternal inflammation.


HTML PDF Share
  1. Martin JA, Hamilton BE, Osterman MJ. Births in the United States, 2021. NCHS Data Brief 2022;(442):1–8. PMID: 36043891
  2. Harrison MS, Goldenberg RL. Global burden of prematurity. Semin Fetal Neonatal Med 2016;21(2):74–79. DOI: 10.1016/j.siny.2015.12.007.
  3. Redline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med 2012;17(1):20–25. DOI: 10.1016/j.siny.2011.08.003.
  4. Jung E, Romero R, Yeo L, et al. The fetal inflammatory response syndrome: The origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med 2020;25(4):101146. DOI: 10.1016/j.siny.2020.101146.
  5. Guzick DS, Winn K. The association of chorioamnionitis with preterm delivery. Obstet Gynecol 1985;65(1):11–16. PMID: 3966012.
  6. Queiros dMV, Prodhom G, Yan P, et al. Correlation between placental bacterial culture results and histological chorioamnionitis: A prospective study on 376 placentas. J Clin Pathol 2013;66(3):243–248. DOI: 10.1136/jclinpath-2012-201124.
  7. Crome SQ, Clive B, Wang AY, et al. Inflammatory effects of ex vivo human Th17 cells are suppressed by regulatory T cells. J Immunol 2010;185(6):3199–3208. DOI: 10.4049/jimmunol.1000557.
  8. Schnell A, Littman DR, Kuchroo VK. T(H)17 cell heterogeneity and its role in tissue inflammation. Nat Immunol 2023;24(1):19–29. DOI: 10.1038/s41590-022-01387-9.
  9. Lawrence SM, Wynn JL. Chorioamnionitis, IL-17A, and fetal origins of neurologic disease. Am J Reprod Immunol 2018;79(5):e12803.
  10. Nakashima A, Ito M, Yoneda S, Shiozaki A, Hidaka T, Saito S. Circulating and decidual Th17 cell levels in healthy pregnancy. Am J Reprod Immunol. 2010;63(2):104-9.
  11. Lawrence SM, Ruoss JL, Wynn JL. IL-17 in neonatal health and disease. Am J Reprod Immunol. 2018;79(5):e12800. DOI: 10.1111/aji.12803.
  12. Ito M, Nakashima A, Hidaka T, S, et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J Reprod Immunol 2010;84(1):75–85. DOI: 10.1016/j.jri.2009.09.005.
  13. Rito DC, Viehl LT, Buchanan PM, et al. Augmented Th17-type immune responses in preterm neonates exposed to histologic chorioamnionitis. Pediatr Res 2017;81(4):639–645. DOI: 10.1038/pr.2016.254.
  14. Jackson CM, Wells CB, Tabangin ME, et al. Pro-inflammatory immune responses in leukocytes of premature infants exposed to maternal chorioamnionitis or funisitis. Pediatr Res 2017;81(2):384–390. DOI: 10.1038/pr.2016.232.
  15. Eghbal–Fard S, Yousefi M, Heydarlou H, et al. The imbalance of Th17/Treg axis involved in the pathogenesis of preeclampsia. J Cell Physiol 2019;234(4):5106–5116. DOI: 10.1002/jcp.27315.
  16. Lee DG, Woo JW, Kwok SK, et al. MRP8 promotes Th17 differentiation via upregulation of IL-6 production by fibroblast-like synoviocytes in rheumatoid arthritis. Exp Mol Med 2013;45(4):e20. DOI: 10.1038/emm.2013.39.
  17. Reinhardt K, Foell D, Vogl T, et al. Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease. J Immunol 2014;193(7):3355–3365. DOI: 10.4049/jimmunol.1400983.
  18. Buhimschi CS, Bhandari V, Han YW, et al. Using proteomics in perinatal and neonatal sepsis: Hopes and challenges for the future. Curr Opin Infect Dis 2009;22(3):235–443. DOI: 10.1097/QCO.0b013e32832a5963.
  19. Phillips RJ, Fortier MA, Lopez BA. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation. BMC Pregnancy Childbirth 2014;14:241. DOI: 10.1186/1471-2393-14-241.
  20. Golubinskaya V, Puttonen H, Fyhr IM, et al. Expression of S100A alarmins in cord blood monocytes is highly associated with chorioamnionitis and fetal inflammation in preterm infants. Front Immunol 2020;11:1194. DOI: 10.3389/fimmu.2020.01194.
  21. Bersani I, De CS, Foell D, et al. Impact of chorioamnionitis on maternal and fetal levels of proinflammatory S100A12. Eur J Pediatr 2021;180(1):39–45. DOI: 10.1007/s00431-020-03695-4.
  22. Green ES, Arck PC. Pathogenesis of preterm birth: Bidirectional inflammation in mother and fetus. Semin Immunopathol 2020;42(4):413–429. DOI: 10.1007/s00281-020-00807-y.
  23. Kessous R, Shoham–Vardi I, Pariente G, et al. An association between preterm delivery and long-term maternal cardiovascular morbidity. Am J Obstet Gynecol 2013;209(4):368.e1-8. DOI: 10.1016/j.ajog.2013.05.041.
  24. Wu P, Gulati M, Kwok CS, S, et al. Preterm delivery and future risk of maternal cardiovascular disease: A systematic review and meta-analysis. J Am Heart Assoc 2018;7(2):e007809. DOI: 10.1161/JAHA.117.007809.
  25. von Stebut E, Boehncke WH, Ghoreschi K, et al. IL-17A in psoriasis and beyond: Cardiovascular and metabolic implications. Front Immunol 2019;10:3096. DOI: 10.3389/fimmu.2019.03096.
  26. Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch Pathol Lab Med 2016;140(7):698–713. DOI: 10.5858/arpa.2015-0225-CC.
  27. Kim CJ, Romero R, Chaemsaithong P, et al. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol 2015;213(Suppl. 4):S53–S69. DOI: 10.1016/j.ajog.2015.08.041.
  28. Higgins RD, Saade G, Polin RA, et al. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: Summary of a workshop. Obstet Gynecol 2016;127(3):426–436. DOI: 10.1097/AOG.0000000000001246.
  29. Committee on Obstetric P. ACOG Committee Opinion No. 712: Intrapartum management of intraamniotic infection. Obstet Gynecol 2017;130(2):e95-e101. DOI: 10.1097/AOG.0000000000002236.
  30. Cosmi L, De PR, Santarlasci V, et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 2008;205(8):1903–916. DOI: 10.1084/jem.20080397.
  31. Liu W, Putnam AL, Xu–Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006;203(7):1701–1711. DOI: 10.1084/jem.20060772.
  32. Borst J, van Dongen JJ, Bolhuis RL, et al. Distinct molecular forms of human T cell receptor gamma/delta detected on viable T cells by a monoclonal antibody. J Exp Med 1988;167(5):1625–1644. DOI: 10.1084/jem.167.5.1625.
  33. Lin J, Haridas S, Barenkamp SJ, et al. Neonatal neutrophils stimulated by group B Streptococcus induce a proinflammatory T-helper cell bias. Pediatr Res 2018;83(3):739–746. DOI: 10.1038/pr.2017.272.
  34. Maggi L, Santarlasci V, Capone M, et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol 2010;40(8):2174–2181. DOI: 10.1002/eji.200940257.
  35. Basdeo SA, Moran B, Cluxton D, et al. Polyfunctional, pathogenic CD161+ Th17 lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity. J Immunol 2015;195(2):528–540. DOI: 10.4049/jimmunol.1402990.
  36. Ramesh R, Kozhaya L, McKevitt K, et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 2014;211(1):89–104. DOI: 10.1084/jem.20130301.
  37. Mai J, Wang H, Yang XF. Th 17 cells interplay with Foxp3+ Tregs in regulation of inflammation and autoimmunity. Front Biosci 2010;15:986–1006. DOI: 10.2741/3657.
  38. Hassane M, Demon D, Soulard D, et al. Neutrophilic NLRP3 inflammasome-dependent IL-1 beta secretion regulates the gamma-delta T17 cell response in respiratory bacterial infections. Mucosal Immunol 2017;10(4):1056–1068. DOI: 10.1038/mi.2016.113.
  39. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014;13(6):668–677. DOI: 10.1016/j.autrev.2013.12.004.
  40. Couture C, Brien ME, Boufaied I, et al. Proinflammatory changes in the maternal circulation, maternal–fetal interface, and placental transcriptome in preterm birth. Am J Obstet Gynecol 2023;228(3):332.e1–332.e17. DOI: 10.1016/j.ajog.2022.08.035.
  41. Kagami S, Rizzo HL, Lee JJ, et al. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. JInvest Dermatol 2010;130(5):1373–1383. DOI: 10.1038/jid.2009.399.
  42. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010;40(7):1830–1835. DOI: 10.1002/eji.201040391.
  43. Lane–Cordova AD, Khan SS, Grobman WA, et al. Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC Review Topic of the Week. J Am Coll Cardiol 2019;73(16):2106–2116. DOI: 10.1016/j.jacc.2018.12.092.
  44. Lee SK, Kim JY, Lee M, et al. Th17 and regulatory T cells in women with recurrent pregnancy loss. Am J Reprod Immunol 2012;67(4):311–318. DOI: 10.1111/j.1600-0897.2012.01116.x.
  45. Zolfaghari MA, Arefnezhad R, Parhizkar F, et al. T lymphocytes and preeclampsia: The potential role of T-cell subsets and related MicroRNAs in the pathogenesis of preeclampsia. Am J Reprod Immunol 2021;86(5):e13475. DOI: 10.1111/aji.13475.
  46. Saito S, Nakashima A, Ito M, et al. Clinical implication of recent advances in our understanding of IL-17 and reproductive immunology. Expert Rev Clin Immunol 2011;7(5):649–657. DOI: 10.1586/eci.11.49.
  47. Fedorka CE, El-Sheikh Ali H, Walker OF, et al. The imbalance of the Th17/Treg axis following equine ascending placental infection. J Reprod Immunol 2021;144:103268. DOI: 10.1016/j.jri.2020.103268.
  48. Yang WY, Shao Y, Lopez–Pastrana J, et al. Pathological conditions re-shape physiological Tregs into pathological Tregs. Burns Trauma 2015;3(1):1. DOI: 10.1186/s41038-015-0001-0.
  49. Frascoli M, Coniglio L, Witt R, et al. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-gamma and TNF-alpha. Sci Transl Med 2018;10(438):eaan2263. DOI: 10.1126/scitranslmed.aan2263.
  50. Lim AI, McFadden T, Link VM, et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 2021;373(6558):eabf3002. DOI: 10.1126/science.abf3002.
  51. Sabic D, Koenig JM. A perfect storm: Fetal inflammation and the developing immune system. Pediatr Res 2020;87(2):319–326. DOI: 10.1038/s41390-019-0582-6.
  52. Xiong Y, Wintermark P. Therapeutic interventions for fetal inflammatory response syndrome (FIRS). Semin Fetal Neonatal Med 2020;25(4):101112. DOI: 10.1016/j.siny.2020.101112.
  53. Cosmi L, Santarlasci V, Maggi L, et al. Th17 plasticity: Pathophysiology and treatment of chronic inflammatory disorders. Curr Opin Pharmacol 2014;17:12–6. DOI: 10.1016/j.coph.2014.06.004.
  54. Singareddy A, Lee ASE, Sweeney PL, et al. Elevated neutrophil–lymphocyte ratios in extremely preterm neonates with histologic chorioamnionitis. J Perinatol 2021;41(6):1269–1277. DOI: 10.1038/s41372-021-00964-4.
  55. Chaiworapongsa T, Romero R, Berry SM, et al. The role of granulocyte colony-stimulating factor in the neutrophilia observed in the fetal inflammatory response syndrome. J Perinat Med 2011;39(6):653–666. DOI: 10.1515/jpm.2011.072.
  56. Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J Leukoc Biol 2007;81(1):28–37. DOI: 10.1189/jlb.0306170.
  57. Parackova Z, Bloomfield M, Klocperk A, et al. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol 2021;109(1):73–76. DOI: 10.1002/JLB.4COVCRA0820-481RRR.
  58. Chellan B, Yan L, Sontag TJ, et al. IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating ABCG1. J Lipid Res 2014;55(3):443–454. DOI: 10.1194/jlr.M044305.
  59. Wu DM, Wang S, Shen M, et al. S100A9 gene silencing inhibits the release of pro-inflammatory cytokines by blocking the IL-17 signalling pathway in mice with acute pancreatitis. J Cell Mol Med 2018;22(4):2378–2389. DOI: 10.1111/jcmm.13532.
  60. Sreejit G, Abdel–Latif A, Athmanathan B, et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 2020;141(13):1080–1094. DOI: 10.1161/CIRCULATIONAHA.119.043833.
  61. Li SC, Tsai KW, Huang LH, et al. Serum proteins may facilitate the identification of Kawasaki disease and promote in vitro neutrophil infiltration. Sci Rep 2020;10(1):15645. DOI: 10.1038/s41598-020-72695-z.
  62. Pelletier M, Maggi L, Micheletti A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010;115(2):335–343. DOI: 10.1182/blood-2009-04-216085.
  63. Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100(6):655–669. DOI: 10.1016/s0092-8674(00)80702-3.
  64. Matta P, Sherrod SD, Marasco CC, et al. In utero exposure to histological chorioamnionitis primes the exometabolomic profiles of preterm CD4+ T lymphocytes. J Immunol 2017;199(9):3074–3085. DOI: 10.4049/jimmunol.1601880.
  65. Tyden H, Lood C, Gullstrand B, et al. Increased serum levels of S100A8/A9 and S100A12 are associated with cardiovascular disease in patients with inactive systemic lupus erythematosus. Rheumatology(Oxford) 2013;52(11):2048–2055. DOI: 10.1093/rheumatology/ket263.
  66. Fanaroff JM, Donn SM. Medico–legal implications of the fetal inflammatory response syndrome. Semin Fetal Neonatal Med 2020;25(4):101127. DOI: 10.1016/j.siny.2020.101127.
  67. Oesterle A, Bowman MA. S100A12 and the S100/calgranulins: Emerging biomarkers for atherosclerosis and possibly therapeutic targets. Arterioscler Thromb Vasc Biol 2015;35(12):2496–2507. DOI: 10.1161/ATVBAHA.115.302072
  68. Yang D, Sun YY, Bhaumik SK, et al. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic–ischemic brain injury in newborns. J Neurosci 2014;34(49):16467–16481. DOI: 10.1523/JNEUROSCI.2582-14.2014.
  69. Faupel–Badger JM, Fichorova RN, Allred EN, et al. Cluster analysis of placental inflammatory proteins can distinguish preeclampsia from preterm labor and premature membrane rupture in singleton deliveries less than 28 weeks of gestation. Am J Reprod Immunol 2011;66(6):488–494. DOI: 10.1111/j.1600-0897.2011.01023.x.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.