Register      Login

VOLUME 2 , ISSUE 2 ( April-June, 2023 ) > List of Articles


Imaging of the Preterm Cerebellum

Pavan Kalamdani, Gayatri Athalye-Jape, Saumil Desai, Nalinikanta Panigrahy, Ju-Li Ang, Amit Upadhyay, Roya Huseynova, Ogtay Huseynov, Anil Rao, Priyanka Gupta, Thierry AGM Huisman

Keywords : Cerebellar hemorrhage, Cerebellum, Diagnostic imaging, Disruptions, Magnetic resonance imaging, Malformations

Citation Information : Kalamdani P, Athalye-Jape G, Desai S, Panigrahy N, Ang J, Upadhyay A, Huseynova R, Huseynov O, Rao A, Gupta P, Huisman TA. Imaging of the Preterm Cerebellum. 2023; 2 (2):115-121.

DOI: 10.5005/jp-journals-11002-0061

License: CC BY-NC 4.0

Published Online: 05-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Cerebellar injury is being increasingly recognized as a significant complication of preterm birth. A critical phase of cerebellar growth occurs during the third trimester characterized by cellular migration, proliferation, and arborization. This vulnerable developmental phase increases the risk of impaired cerebellar development, especially in preterm infants, given their exposure to adverse extrauterine environments. Cerebellar malformations and disruptions are the types of cerebellar insults encountered. A “malformation” is defined as a non-progressive, congenital morphologic anomaly of a single organ or body part following altered primary development. A “disruption” is defined as a non-progressive, congenital morphologic anomaly following the breakdown of a body structure that had the normal potential for development. Advances in neonatal neuroimaging with increased use of mastoidal and suboccipital views focusing on the posterior fossa by cranial ultrasound (cUS) and high-resolution anatomical and functional magnetic resonance imaging (MRI) have improved the sensitive and specific identification of posterior fossa abnormalities, in particular of cerebellar injury in preterm neonates. This article discusses the various modalities of neuroimaging of the cerebellum with advantages and disadvantages. Ultrasonography (USG) is the most easily available and feasible bedside modality of imaging, though it has the disadvantage of not detecting subtle abnormalities like punctate hemorrhages. Conventional T1 and T2 weighted MRI can detect most of the cerebellar malformations and disruptions in preterm infants. But the logistics of MRI at most institutions make it less feasible during the first few weeks of life for extremely preterm neonates. The role of advanced MRI modalities such as functional MRI, diffusion tensor imaging (DTI), and magnetic resonance (MR) spectroscopy in cerebellar disruptions and malformations are also discussed in some detail.

  1. Tam EW, Chau V, Ferriero DM, et al. Preterm cerebellar growth impairment after postnatal exposure to glucocorticoids. Sci Transl Med 2011;3(105):105ra105. DOI: 10.1126/scitranslmed.3002884.
  2. Limperopoulos C, Soul JS, Haidar H, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 2005;116(4):844–850. DOI: 10.1542/peds.2004-2282.
  3. Limperopoulos C, Benson CB, Bassan H, et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 2005;116(3):717–724. DOI: 10.1542/peds.2005-0556.
  4. Steggerda SJ, Leijser LM, Wiggers–de Bruïne FT, et al. Cerebellar injury in preterm infants: Incidence and findings on US and MR images. Radiology 2009;252(1):190–199. DOI: 10.1148/radiol.2521081525.
  5. Brossard–Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum 2015;14(2):151–164. DOI: 10.1007/s12311-014-0597-9.
  6. Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. Handb Clin Neurol 2018;155:61–72. DOI: 10.1016/B978-0-444-64189-2.00004-4.
  7. Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events. Front Syst Neurosci 2021;15:655164. DOI: 10.3389/fnsys.2021.655164.
  8. Pieterman K, Batalle D, Dudink J, et al. Cerebello–cerebral connectivity in the developing brain. Brain Struct Funct 2017;222(4):1625–1634. DOI: 10.1007/s00429-016-1296-8.
  9. Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum 2016;15(1):34–37. DOI: 10.1007/s12311-015-0715-3.
  10. Accogli A, Addour–Boudrahem N, Srour M. Diagnostic approach to cerebellar hypoplasia. Cerebellum 2021;20(4):631–658. DOI: 10.1007/s12311-020-01224-5.
  11. Ramos TC, Balardin JB, Sato JR, et al. Abnormal cortico–cerebellar functional connectivity in Autism spectrum disorder. Front Syst Neurosci 2019;12:74. DOI: 10.3389/fnsys.2018.00074.
  12. Mariën P, Ackermann H, Adamaszek M, et al. Consensus paper: Language and the cerebellum—an ongoing enigma. Cerebellum 2014;13(3):386–410. DOI: 10.1007/s12311-013-0540-5.
  13. Wyciszkiewicz A, Pawlak MA, Krawiec K. Cerebellar volume in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol 2017;32(2):215–221. DOI: 10.1177/0883073816678550.
  14. ten Donkelaar HJ, Lammens M, Wesseling P, et al. Development and developmental disorders of the human cerebellum. J Neurol 2003;250(9):1025–1036. DOI: 10.1007/s00415-003-0199-9.
  15. Chang CH, Chang FM, Yu CH, et al. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol 2000;26(6):981–988. DOI: 10.1016/s0301-5629(00)00225-8.
  16. Matsufuji M, Sano N, Tsuru H, et al. Neuroimaging and neuropathological characteristics of cerebellar injury in extremely low birth weight infants. Brain Dev 2017;39(9):735–742. DOI: 10.1016/j.braindev.2017.04.011.
  17. Du Plessis AJ, Limperopoulos C, Volpe JJ. Cerebellar development. In: Volpe JJ, Inder TE, du Plessis A, et al., editors. Volpe's Neurology of the Newborn, 6th edition, Philadelphia, PA: Elsevier; 2018, pp. 73–99.
  18. Volpe JJ. Cerebellum of the premature infant: Rapidly developing, vulnerable, clinically important. J Child Neurol 2009;24(9):1085–1104. DOI: 10.1177/0883073809338067.
  19. Haines KM, Wang W, Pierson CR. Cerebellar hemorrhagic injury in premature infants occurs during a vulnerable developmental period and is associated with wider neuropathology. Acta Neuropathol Commun 2013;1:69. DOI: 10.1186/2051-5960-1-69.
  20. Limperopoulos C, Plessis AJ, Volpe JJ. Cerellar hemorrhage. In: Volpe JJ, Inder TE, Darras BT, et al., editors. Volpe's Neurology of the Newborn. 6th edition. Philadelphia, PA: Elsevier; 2018:623–636.
  21. Parodi A, Rossi A, Severino M, et al. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 2015;100(4):F289–F292. DOI: 10.1136/archdischild-2014-307176.
  22. Fumagalli M, Parodi A, Ramenghi L, et al. Ultrasound of acquired posterior fossa abnormalities in the newborn. Pediatr Res 2020;87(Suppl. 1):25–36. DOI: 10.1038/s41390-020-0778-9.
  23. Correa F, Enríquez G, Rosselló J, et al. Posterior fontanelle sonography: An acoustic window into the neonatal brain. Am J Neuroradiol 2004;25(7):1274–1282. PMID: 15313724.
  24. Muehlbacher T, Schaefer RN, Buss C, et al. A closer look at a small brain: Transnuchal ultrasound facilitates high-resolution imaging of the cerebellum in preterm infants. Ultraschall Med 2021;42(4):395–403. DOI: 10.1055/a-1072-5207.
  25. Boswinkel V, Steggerda SJ, Fumagalli M, et al. The CHOPIn study: A multicenter study on cerebellar hemorrhage and outcome in preterm infants. Cerebellum 2019;18(6):989–998. DOI: 10.1007/s12311-019-01053-1.
  26. Consalez GG, Goldowitz D, Casoni F, et al. Origins, development, and compartmentation of the granule cells of the cerebellum. Front Neural Circuits 2021;14:611841. DOI: 10.3389/fncir.2020.611841.
  27. Aisa MC, Barbati A, Cappuccini B, et al. 3D echo brain volumes to predict neurodevelopmental Outcome in Infants: A prospective observational follow-up study. Ultrasound Med Biol 2021;47(8):2220–2232. DOI: 10.1016/j.ultrasmedbio.2021.03.029.
  28. Aisa MC, Barbati A, Gerli S, et al. Brain 3D-echographic early predictors of neuro-behavioral disorders in infants: A prospective observational study. J Matern Fetal Neonatal Med 2022;35(4):642–650. DOI: 10.1080/14767058.2020.1730323.
  29. Steggerda SJ, de Bruïne FT, Smits–Wintjens VE, et al. Posterior fossa abnormalities in high-risk term infants: Comparison of ultrasound and MRI. Eur Radiol 2015;25(9):2575–2583. DOI: 10.1007/s00330-015-3665-8.
  30. Villamor–Martinez E, Fumagalli M, Alomar YI, et al. Cerebellar hemorrhage in preterm infants: A meta-analysis on risk factors and neurodevelopmental outcome. Front Physiol 2019;10:800. DOI: 10.3389/fphys.2019.00800.
  31. Romberg J, Wilke M, Allgaier C, et al. MRI-based brain volumes of preterm infants at term: A systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022;107(5):520–526. DOI: 10.1136/archdischild-2021-322846.
  32. Kim SH, Shin SH, Yang HJ, et al. Neurodevelopmental outcomes and volumetric analysis of brain in preterm infants with isolated cerebellar hemorrhage. Front Neurol 2022;13:1073703. DOI: 10.3389/fneur.2022.1073703.
  33. Wu Y, Stoodley C, Brossard–Racine M, et al. Altered local cerebellar and brainstem development in preterm infants. Neuroimage 2020;213:116702. DOI: 10.1016/j.neuroimage.2020.116702.
  34. Matthews LG, Inder TE, Pascoe L, et al. Longitudinal preterm cerebellar volume: Perinatal and neurodevelopmental outcome associations. Cerebellum 2018;17(5):610–627. DOI: 10.1007/s12311-018-0946-1.
  35. Counsell SJ, Rutherford MA, Cowan FM, et al. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed 2003;88(4):F269–F274. DOI: 10.1136/fn.88.4.f269.
  36. Brossard–Racine M, Poretti A, Murnick J, et al. Cerebellar microstructural organization is altered by complications of premature birth: A case–control Study. J Pediatr 2017;182:28-33.e1. DOI: 10.1016/j.jpeds.2016.10.034.
  37. Brouwer MJ, van Kooij BJ, van Haastert IC, et al. Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants. PLoS One 2014;9(10):e109556. DOI: 10.1371/journal.pone.0109556.
  38. Gire C, Berbis J, Dequin M, et al. A correlation between magnetic resonance spectroscopy (1-H MRS) and the neurodevelopment of two-year-olds born preterm in an EPIRMEX cohort study. Front Pediatr 2022;10:936130. DOI: 10.3389/fped.2022.936130.
  39. Basu SK, Pradhan S, Kapse K, et al. Third trimester cerebellar metabolite concentrations are decreased in very premature infants with structural brain injury. Sci Rep 2019;9(1):1212. DOI: 10.1038/s41598-018-37203-4.
  40. Van Kooij BJ, Benders MJ, Anbeek P, et al. Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol 2012;54(3):260–266. DOI: 10.1111/j.1469-8749.2011.04168.x.
  41. Brossard–Racine M, Murnick J, Bouyssi–Kobar M, et al. Altered cerebellar biochemical profiles in infants born prematurely. Sci Rep 2017;7(1):8143. DOI: 10.1038/s41598-017-08195-4.
  42. Vo Van P, Alison M, Morel B, et al. Advanced brain imaging in preterm infants: A narrative review of microstructural and connectomic disruption. Children (Basel) 2022;9(3):356. DOI: 10.3390/children9030356.
  43. Herzmann CS, Snyder AZ, Kenley JK, et al. Cerebellar functional connectivity in term- and very preterm-born infants. Cereb Cortex 2019;29(3):1174–1184. DOI: 10.1093/cercor/bhy023.
  44. Amore G, Spoto G, Ieni A, et al. A focus on the cerebellum: From embryogenesis to an age-related clinical perspective. Front Syst Neurosci 2021;15:646052. DOI: 10.3389/fnsys.2021.646052.
  45. Uusitalo K, Haataja L, Saunavaara V, et al. Performance in hand coordination tasks and concurrent functional MRI findings in 13-year-olds born very preterm. Pediatr Neurol 2021;123:21–29. DOI: 10.1016/j.pediatrneurol.2021.07.001.
  46. Snyder E, Hwang M, Soares BP, et al. Ultrasound and CT of the posterior fossa in neonates. Handb Clin Neurol 2018;154:205–217. DOI: 10.1016/B978-0-444-63956-1.00012-6.
  47. Steggerda SJ, Meijler G. Neonatal cerebellar hemorrhage. In: Martin R, Wilkie L, editors. UpToDate [Internet]. Waltham (MA): UpToDate, Inc. Available at:
  48. van 't Westende C, Steggerda SJ, Jansen L, et al. Combining advanced MRI and EEG techniques better explains long-term motor outcome after very preterm birth. Pediatr Res 2022;91(7):1874–1881. DOI: 10.1038/s41390-021-01571-x.
  49. De Wel O, Van Huffel S, Lavanga M, et al. Relationship between early functional and structural brain developments and brain injury in preterm infants. Cerebellum 2021;20(4):556–568. DOI: 10.1007/s12311-021-01232-z.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.