Newborn

Register      Login

VOLUME 2 , ISSUE 1 ( January-March, 2023 ) > List of Articles

REVIEW ARTICLE

Congenital Chikungunya Virus Infections

Astha Amrit, Sushant Mane, Gangajal Kasniya, Mohd Mozibur Rahman, Atnafu Mekonnen Tekleab

Keywords : Aedes aegypti, Aedes albopictus, Brownie nose, Chikungunya sign, Chikungunya virus encephalitis, Infant, Neonate, Newborn, Thrombocytopenia, Vertical transmission

Citation Information : Amrit A, Mane S, Kasniya G, Rahman MM, Tekleab AM. Congenital Chikungunya Virus Infections. 2023; 2 (1):45-59.

DOI: 10.5005/jp-journals-11002-0054

License: CC BY-NC 4.0

Published Online: 07-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Structure: Chikungunya virus (CHIKV) is an arthropod-borne ribonucleic acid (RNA) virus, classified in the genus alphavirus in the family Togaviridae. Clinical presentation: Perinatal/neonatal infections are rare, but some infants can develop fever, thrombocytopenia, lymphopenia, pigmentary changes, and a maculopapular rash. The neurocognitive outcome of some infants with vertically transmitted mother-to-child perinatal infections and CHIKV neonatal encephalopathy can be poor. Diagnosis: The diagnosis of CHIKV infections can be confirmed by the detection of chikungunya viral RNA via real-time reverse-transcription polymerase chain reaction (RT-PCR) and/or specific immunoglobulin (Ig)M and IgG serology. Treatment: Currently, no specific antiviral treatment(s) are available for CHIKV, and management is limited to supportive care by maintaining adequate intravascular volume by intravenous fluids and oral rehydration. Infants exposed in utero or during the perinatal period need to be monitored for adverse neurocognitive outcomes.


HTML PDF Share
  1. Cunha MS, Costa PAG, Correa IA, et al. Chikungunya virus: An emergent arbovirus to the South American continent and a continuous threat to the world. Front Microbiol 2020;11:1297. DOI: 10.3389/fmicb.2020.01297.
  2. Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 2010;8(7):491–500. DOI: 10.1038/nrmicro2368.
  3. Powers AM, Logue CH. Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus. J Gen Virol 2007;88(9): 2363–2377. DOI: 10.1099/vir.0.82858-0.
  4. Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 2015;372(13):1231–1239. DOI: 10.1056/NEJMra1406035
  5. Monge P, Vega JM, Sapag AM, et al. Pan-American League of Associations for Rheumatology-Central American, Caribbean and Andean Rheumatology Association Consensus-Conference Endorsements and Recommendations on the diagnosis and treatment of chikungunya-related inflammatory arthropathies in Latin America. J Clin Rheumatol 2019;25(2):101–107. DOI: 10.1097/RHU.0000000000000868.
  6. Ross RW. The Newala epidemic. III. The virus: Isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond) 1956;54(2):177–191. DOI: 10.1017/s0022172400044442.
  7. Taksande A, Vilhekar KY. Neonatal chikungunya infection. J Prev Inf Cntrl 2015;1(1):8.
  8. Gudo ES, Black JF, Cliff JL. Chikungunya in Mozambique: A forgotten history. PLoS Negl Trop Dis 2016;10(11):e0005001. DOI: 10.1371/journal.pntd.0005001.
  9. Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg 1955;49(1):28–32. DOI: 10.1016/0035-9203(55)90080-8.
  10. Silva LA, Dermody TS. Chikungunya virus: Epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017;127(3):737–749. DOI: 10.1172/JCI84417.
  11. Mourad O, Makhani L, Chen LH. Chikungunya: An emerging public health concern. Curr Infect Dis Rep 2022;24(12):217–228. DOI: 10.1007/s11908-022-00789-y.
  12. Powers AM, Brault AC, Shirako Y, et al. Evolutionary relationships and systematics of the alphaviruses. J Virol 2001;75(21):10118–101131. DOI: 10.1128/JVI.75.21.10118-10131.2001.
  13. Abere B, Wikan N, Ubol S, et al. Proteomic analysis of chikungunya virus infected microgial cells. PLoS One 2012;7(4):e34800. DOI: 10.1371/journal.pone.0034800.
  14. Rezza G, Chen R, Weaver SC. O'nyong-nyong fever: A neglected mosquito-borne viral disease. Pathog Glob Health 2017;111(6): 271–275. DOI: 10.1080/20477724.2017.1355431.
  15. Laurent T, Kumar P, Liese S, et al. Architecture of the chikungunya virus replication organelle. Elife 2022;11:e83042. DOI: 10.7554/eLife.83042.
  16. Griffin DE. Alphaviruses. In: Fields Virology, 6th edition. Lippincott-Raven: Philadelphia, 2015; pp. 651–686.
  17. Kendall C, Khalid H, Muller M, et al. Structural and phenotypic analysis of chikungunya virus RNA replication elements. Nucleic Acids Res 2019;47(17):9296–9312. DOI: 10.1093/nar/gkz640.
  18. Singh A, Kumar A, Uversky VN, et al. Understanding the intractability of chikungunya virus proteins via molecular recognition feature analysis. RSC Adv 2018;8(48):27293–27303. DOI: 10.1039/c8ra04760j.
  19. Barr KL, Vaidhyanathan V. Chikungunya in infants and children: Is pathogenesis increasing? Viruses 2019;11(3):294. DOI: 10.3390/v11030294.
  20. Kril V, Aiqui-Reboul-Paviet O, Briant L, et al. New insights into chikungunya virus infection and pathogenesis. Annu Rev Virol 2021;8(1):327–347. DOI: 10.1146/annurev-virology-091919-102021.
  21. Schnierle BS. Cellular attachment and entry factors for chikungunya virus. Viruses 2019;11(11):1078. DOI:10.3390/v11111078.
  22. Kim AS, Zimmerman O, Fox JM, et al. An evolutionary insertion in the Mxra8 receptor-binding site confers resistance to alphavirus infection and pathogenesis. Cell Host Microbe 2020;27(3):428–440e9. DOI: 10.1016/j.chom.2020.01.008.
  23. Zhang R, Kim AS, Fox JM, et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 2018;557(7706):570–574. DOI: 10.1038/s41586-018-0121-3.
  24. Fernandes AIV, Souza JR, Silva AR, et al. Immunoglobulin therapy in a patient with severe chikungunya fever and vesiculobullous lesions. Front Immunol 2019;10:1498. DOI: 10.3389/fimmu.2019.01498.
  25. Pfeiffer JK, Kirkegaard K. A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 2003;100(12):7289–7294. DOI: 10.1073/pnas.1232294100.
  26. Tsetsarkin KA, Vanlandingham DL, McGee CE, et al. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 2007;3(12):e201. DOI: 10.1371/journal.ppat.0030201.
  27. Holmes E. The RNA Virus Quasispecies. In: The Evolution and Emergence of RNA Viruses: Oxford Series in Ecology and Evolution. Harvey PH, May RM (eds). Oxford University Press: UK, 2009; pp. 87–103.
  28. Stapleford KA, Rozen-Gagnon K, Das PK, et al. Viral polymerase-helicase complexes regulate replication fidelity to overcome intracellular nucleotide depletion. J Virol 2015;89(22):11233–11244. DOI: 10.1128/JVI.01553-15.
  29. Kautz TF, Forrester NL. RNA virus fidelity mutants: a useful tool for evolutionary biology or a complex challenge? Viruses 2018;10(11):600. DOI: 10.3390/v10110600.
  30. Fitzsimmons WJ, Woods RJ, McCrone JT, et al. A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biol 2018;16(6):e2006459. DOI: 10.1371/journal.pbio.2006459.
  31. Lee HY, Perelson AS, Park SC, et al. Dynamic correlation between intrahost HIV-1 quasispecies evolution and disease progression. PLoS Comput Biol 2008;4(12):e1000240. DOI: 10.1371/journal.pcbi.1000240.
  32. Sullivan DG, Bruden D, Deubner H, et al. Hepatitis C virus dynamics during natural infection are associated with long-term histological outcome of chronic hepatitis C disease. J Infect Dis 2007;196(2): 239–248. DOI: 10.1086/518895.
  33. Schuffenecker I, Iteman I, Michault A, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 2006;3(7):e263. DOI: 10.1371/journal.pmed.0030263.
  34. Langsjoen RM, Haller SL, Roy CJ, et al. Chikungunya virus strains show lineage-specific variations in virulence and cross-protective ability in murine and nonhuman primate models. mBio 2018;9(2):e02449-17. DOI: 10.1128/mBio.02449-17.
  35. Burt FJ, Rolph MS, Rulli NE, et al. Chikungunya: A re-emerging virus. Lancet 2012;379(9816):662–671. DOI: 10.1016/S0140-6736(11)60281-X.
  36. Lumsden WH. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. II. General description and epidemiology. Trans R Soc Trop Med Hyg 1955;49(1):33–57. DOI: 10.1016/0035-9203(55)90081-x.
  37. Pialoux G, Gauzere BA, Jaureguiberry S, et al. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 2007;7(5):319–327. DOI: 10.1016/S1473-3099(07)70107-X.
  38. Santhosh SR, Dash PK, Parida MM, et al. Comparative full genome analysis revealed E1: A226V shift in 2007 Indian Chikungunya virus isolates. Virus Res 2008;135(1):36–41. DOI: 10.1016/j.virusres.2008.02.004.
  39. de Souza TMA, Ribeiro ED, Correa VCE, et al. Following in the footsteps of the chikungunya virus in Brazil: The first autochthonous cases in Amapa in 2014 and its emergence in Rio de Janeiro during 2016. Viruses 2018;10(11):623. DOI: 10.3390/v10110623.
  40. Edwards T, Del Carmen Castillo Signor L, Williams C, et al. Analytical and clinical performance of a chikungunya qRT-PCR for Central and South America. Diagn Microbiol Infect Dis 2017;89(1):35–39. DOI: 10.1016/j.diagmicrobio.2017.06.001.
  41. Priya R, Patro IK, Parida MM. TLR3 mediated innate immune response in mice brain following infection with Chikungunya virus. Virus Res 2014;189:194–205. DOI: 10.1016/j.virusres.2014.05.010.
  42. Gerardin P, Freitas ARR, Sissoko D, et al. Transmission dynamics and disease severity in children infected with East Central South African (ECSA) or ECSA-diverged clades of chikungunya virus. Clin Infect Dis 2019;68(1):171–172. DOI: 10.1093/cid/ciy534.
  43. Gordon A, Gresh L, Ojeda S, et al. Differences in transmission and disease severity between 2 successive waves of chikungunya. Clin Infect Dis 2018;67(11):1760–1767. DOI: 10.1093/cid/ciy356.
  44. Powers AM, Brault AC, Tesh RB, et al. Re-emergence of chikungunya and o'nyong'nyong viruses: Evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 2000;81(2):471–479. DOI: 10.1099/0022-1317-81-2-471.
  45. Kimberlin DW. Chikungunya. In: Red Book: 2021 Report of the Committee on Infectious Diseases. Kimberlin DW (ed). American Academy of Pediatrics: USA, 2021; pp. 254–256.
  46. Mohan A, Kiran DH, Manohar IC, et al. Epidemiology, clinical manifestations, and diagnosis of chikungunya fever: Lessons learned from the re-emerging epidemic. Indian J Dermatol 2010;55(1):54–63. DOI: 10.4103/0019-5154.60355.
  47. Contopoulos-Ioannidis D, Newman-Lindsay S, Chow C, et al. Mother-to-child transmission of chikungunya virus: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018;12(6):e0006510. DOI: 10.1371/journal.pntd.0006510.
  48. Sharif N, Sarkar MK, Ferdous RN, et al. Molecular epidemiology, evolution and reemergence of chikungunya virus in South Asia. Front Microbiol 2021;12:689979. DOI: 10.3389/fmicb.2021.689979.
  49. Silva MMO, Tauro LB, Kikuti M, et al. Concomitant transmission of dengue, chikungunya, and zika viruses in Brazil: Clinical and epidemiological findings from surveillance for acute febrile illness. Clin Infect Dis 2019;69(8):1353–1359. DOI: 10.1093/cid/ciy1083.
  50. Panning M, Grywna K, van Esbroeck M, et al. Chikungunya fever in travelers returning to Europe from the Indian Ocean region, 2006. Emerg Infect Dis 2008;14(3):416–422. DOI: 10.3201/eid1403.070906.
  51. Parola P, de Lamballerie X, Jourdan J, et al. Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis 2006;12(10):1493–1499. DOI: 10.3201/eid1210.060610.
  52. Brouard C, Bernillon P, Quatresous I, et al. Estimated risk of chikungunya viremic blood donation during an epidemic on Reunion Island in the Indian Ocean, 2005 to 2007. Transfusion 2008;48(7): 1333–1341. DOI: 10.1111/j.1537-2995.2008.01646.x.
  53. Simmons G, Bres V, Lu K, et al. High incidence of chikungunya virus and frequency of viremic blood donations during epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis 2016;22(7):1221–1228. DOI: 10.3201/eid2207.160116.
  54. Gerardin P, Samperiz S, Ramful D, et al. Neurocognitive outcome of children exposed to perinatal mother-to-child chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLoS Negl Trop Dis 2014;8(7):e2996. DOI: 10.1371/journal.pntd.0002996.
  55. Gerardin P, Barau G, Michault A, et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion. PLoS Med 2008;5(3):e60. DOI: 10.1371/journal.pmed.0050060.
  56. Lenglet Y, Barau G, Robillard PY, et al. Chikungunya infection in pregnancy: Evidence for intrauterine infection in pregnant women and vertical transmission in the parturient. Survey of the Reunion Island outbreak. J Gynecol Obstet Biol Reprod (Paris) 2006;35(6): 578–583. DOI: 10.1016/s0368-2315(06)76447-x.
  57. Waechter R, Ingraham E, Evans R, et al. Pre and postnatal exposure to chikungunya virus does not affect child neurodevelopmental outcomes at two years of age. PLoS Negl Trop Dis 2020;14(10):e0008546. DOI: 10.1371/journal.pntd.0008546.
  58. Fritel X, Rollot O, Gerardin P, et al. Chikungunya virus infection during pregnancy, Reunion, France, 2006. Emerg Infect Dis 2010;16(3): 418–425. DOI: 10.3201/eid1603.091403.
  59. Torres JR, Falleiros-Arlant LH, Duenas L, et al. Congenital and perinatal complications of chikungunya fever: a Latin American experience. Int J Infect Dis 2016;51:85–88. DOI: 10.1016/j.ijid.2016.09.009.
  60. Ramos R, Viana R, Brainer-Lima A, et al. Perinatal chikungunya virus-associated encephalitis leading to postnatal-onset microcephaly and optic atrophy. Pediatr Infect Dis J 2018;37(1):94–95. DOI: 10.1097/INF.0000000000001690.
  61. McCarthy MK, Morrison TE. Persistent RNA virus infections: Do PAMPS drive chronic disease? Curr Opin Virol 2017;23:8–15. DOI: 10.1016/j.coviro.2017.01.003.
  62. Chen W, Foo SS, Taylor A, et al. Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J Virol 2015;89(1):581–593. DOI: 10.1128/JVI.02034-14.
  63. Miner JJ, Cook LE, Hong JP, et al. Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Sci Transl Med 2017;9(375):eaah3438. DOI: 10.1126/scitranslmed.aah3438.
  64. Teo TH, Chan YH, Lee WW, et al. Fingolimod treatment abrogates chikungunya virus-induced arthralgia. Sci Transl Med 2017;9(375):eaal1333. DOI: 10.1126/scitranslmed.aal1333.
  65. Nikitina E, Larionova I, Choinzonov E, et al. Monocytes and macrophages as viral targets and reservoirs. Int J Mol Sci 2018;19(9):2821. DOI: 10.3390/ijms19092821.
  66. Chirathaworn C, Chansaenroj J, Poovorawan Y. Cytokines and chemokines in chikungunya virus infection: Protection or induction of pathology. Pathogens 2020;9(6):415. DOI: 10.3390/pathogens9060415.
  67. Gupta S, Gupta N. Short-term pregnancy outcomes in patients chikungunya infection: An observational study. J Family Med Prim Care 2019;8(3):985–987. DOI: 10.4103/jfmpc.jfmpc_274_18.
  68. Escobar M, Nieto AJ, Loaiza-Osorio S, et al. Pregnant women hospitalized with chikungunya virus infection, Colombia, 2015. Emerg Infect Dis 2017;23(11):1777–1783. DOI: 10.3201/eid2311.170480.
  69. Kazankov K, Barrera F, Moller HJ, et al. Soluble CD163, a macrophage activation marker, is independently associated with fibrosis in patients with chronic viral hepatitis B and C. Hepatology 2014;60(2):521–530. DOI: 10.1002/hep.27129.
  70. Schliefsteiner C, Peinhaupt M, Kopp S, et al. Human placental Hofbauer cells maintain an anti-inflammatory M2 phenotype despite the presence of gestational diabetes mellitus. Front Immunol 2017;8:888. DOI: 10.3389/fimmu.2017.00888.
  71. Shi Z, Long W, Zhao C, et al. Comparative proteomics analysis suggests that placental mitochondria are involved in the development of pre-eclampsia. PLoS One 2013;8(5):e64351. DOI: 10.1371/journal.pone.0064351.
  72. Burton GJ, Yung HW, Murray AJ. Mitochondrial – Endoplasmic reticulum interactions in the trophoblast: Stress and senescence. Placenta 2017;52:146–155. DOI: 10.1016/j.placenta.2016.04.001.
  73. Clemente O, Sandoval C. The placenta in a case of pregnant woman infected by chikungunya virus. J Virol Retrovirol 2016;2(1):1–4.
  74. Kinder JM, Stelzer IA, Arck PC, et al. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 2017;17(8):483–494. DOI: 10.1038/nri.2017.38.
  75. Lamothe J, Khurana S, Tharmalingam S, et al. Oxidative stress mediates the fetal programming of hypertension by glucocorticoids. Antioxidants (Basel) 2021;10(4):531. DOI: 10.3390/antiox10040531.
  76. Schepanski S, Buss C, Hanganu-Opatz IL, et al. Prenatal immune and endocrine modulators of offspring's brain development and cognitive functions later in life. Front Immunol 2018;9:2186. DOI: 10.3389/fimmu.2018.02186.
  77. Rajapakse S, Rodrigo C, Rajapakse A. Atypical manifestations of chikungunya infection. Trans R Soc Trop Med Hyg 2010;104(2):89–96. DOI: 10.1016/j.trstmh.2009.07.031.
  78. Iosif RE, Ekdahl CT, Ahlenius H, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006;26(38):9703–9712. DOI: 10.1523/JNEUROSCI.2723-06.2006.
  79. von Ehrenstein OS, Neta GI, Andrews W, et al. Child intellectual development in relation to cytokine levels in umbilical cord blood. Am J Epidemiol 2012;175(11):1191–1199. DOI: 10.1093/aje/kwr393.
  80. Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 2010;30(3):459–473. DOI: 10.1038/jcbfm.2009.240.
  81. Kelland EE, Gilmore W, Weiner LP, et al. The dual role of CXCL8 in human CNS stem cell function: Multipotent neural stem cell death and oligodendrocyte progenitor cell chemotaxis. Glia 2011;59(12):1864–1878. DOI: 10.1002/glia.21230.
  82. Stuart MJ, Singhal G, Baune BT. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders. Front Cell Neurosci 2015;9:357. DOI: 10.3389/fncel.2015.00357.
  83. Lima MC, de Mendonca LR, Rezende AM, et al. The transcriptional and protein profile from human infected neuroprogenitor cells is strongly correlated to zika virus microcephaly cytokines phenotype evidencing a persistent inflammation in the CNS. Front Immunol 2019;10:1928. DOI: 10.3389/fimmu.2019.01928.
  84. Naveca FG, Pontes GS, Chang AY, et al. Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage. Mem Inst Oswaldo Cruz 2018;113(6):e170542. DOI: 10.1590/0074-02760170542.
  85. Puccioni-Sohler M, da Silva SJ, Faria LCS, et al. Neopterin and CXCL-10 in cerebrospinal fluid as potential biomarkers of neuroinvasive dengue and chikungunya. Pathogens 2021;10(12):1626. DOI: 10.3390/pathogens10121626.
  86. Barbosa S, Khalfallah O, Forhan A, et al. Immune activity at birth and later psychopathology in childhood. Brain Behav Immun Health 2020;8:100141. DOI: 10.1016/j.bbih.2020.100141.
  87. Venugopalan A, Ghorpade RP, Chopra A. Cytokines in acute chikungunya. PLoS One 2014;9(10):e111305. DOI: 10.1371/journal.pone.0111305.
  88. Zhang YL, Luan B, Wang XF, et al. Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development. PLoS One 2013;8(5):e63775. DOI: 10.1371/journal.pone.0063775.
  89. van Enter BJD, Huibers MHW, van Rooij L, et al. Perinatal outcomes in vertically infected neonates during a chikungunya outbreak on the Island of Curacao. Am J Trop Med Hyg 2018;99(6):1415–1418. DOI: 10.4269/ajtmh.17-0957.
  90. Sevenoaks T, Wedderburn CJ, Donald KA, et al. Association of maternal and infant inflammation with neurodevelopment in HIV-exposed uninfected children in a South African birth cohort. Brain Behav Immun 2021;91:65–73. DOI: 10.1016/j.bbi.2020.08.021.
  91. Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by Toll-like receptors: Distinct responses in newborns and the elderly. Immunity 2012;37(5):771–783. DOI: 10.1016/j.immuni.2012.10.014.
  92. Couderc T, Chretien F, Schilte C, et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 2008;4(2):e29. DOI: 10.1371/journal.ppat.0040029.
  93. Slaats J, Ten Oever J, van de Veerdonk FL, et al. IL-1beta/IL-6/CRP and IL-18/ferritin: Distinct inflammatory programs in infections. PLoS Pathog 2016;12(12):e1005973. DOI: 10.1371/journal.ppat.1005973.
  94. Valero N, Mosquera J, Torres M, et al. Increased serum ferritin and interleukin-18 levels in children with dengue. Braz J Microbiol 2019;50(3):649–656. DOI: 10.1007/s42770-019-00105-2.
  95. Torres MC, Di Maio F, Brown D, et al. In depth viral diversity analysis in atypical neurological and neonatal chikungunya infections in Rio de Janeiro, Brazil. Viruses 2022;14(9):2006. DOI: 10.3390/v14092006.
  96. Lim SM, van den Ham HJ, Oduber M, et al. Transcriptomic analyses reveal differential gene expression of immune and cell death pathways in the brains of mice infected with West Nile virus and chikungunya virus. Front Microbiol 2017;8:1556. DOI: 10.3389/fmicb.2017.01556.
  97. Verboon-Maciolek MA, Groenendaal F, Cowan F, et al. White matter damage in neonatal enterovirus meningoencephalitis. Neurology 2006;66(8):1267–1269. DOI: 10.1212/01.wnl.0000208429.69676.23.
  98. Verboon-Maciolek MA, Groenendaal F, Hahn CD, et al. Human parechovirus causes encephalitis with white matter injury in neonates. Ann Neurol 2008;64(3):266–273. DOI: 10.1002/ana.21445.
  99. Couderc T, Lecuit M. Focus on chikungunya pathophysiology in human and animal models. Microbes Infect 2009;11(14-15):1197–1205. DOI: 10.1016/j.micinf.2009.09.002.
  100. Her Z, Malleret B, Chan M, et al. Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J Immunol 2010;184(10):5903–5913. DOI: 10.4049/jimmunol.0904181.
  101. Ali M, Safriel Y, Sohi J, et al. West Nile virus infection: MR imaging findings in the nervous system. AJNR Am J Neuroradiol 2005;26(2):289–297. PMCID: PMC7974109.
  102. Hauwel M, Furon E, Canova C, et al. Innate (inherent) control of brain infection, brain inflammation and brain repair: The role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res Brain Res Rev 2005;48(2):220–233. DOI: 10.1016/j.brainresrev.2004.12.012.
  103. Goedeke L, Fernandez-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci 2012;69(6):915–930. DOI: 10.1007/s00018-011-0857-5.
  104. Thio CL, Yusof R, Abdul-Rahman PS, et al. Differential proteome analysis of chikungunya virus infection on host cells. PLoS One 2013;8(4):e61444. DOI: 10.1371/journal.pone.0061444.
  105. Houtman JJ, Fleming JO. Pathogenesis of mouse hepatitis virus-induced demyelination. J Neurovirol 1996;2(6):361–376. DOI: 10.3109/13550289609146902.
  106. Fazakerley JK. Pathogenesis of Semliki Forest virus encephalitis. J Neurovirol 2002;8(2):66–74. DOI: 10.1080/135502802901068000.
  107. Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 2010;120(3):894–906. DOI: 10.1172/JCI40104.
  108. Kumar S, Agrawal G, Wazir S, et al. Experience of perinatal and Neonatal Chikungunya Virus (CHIKV) Infection in a Tertiary Care Neonatal Centre during Outbreak in North India in 2016: A case series. J Trop Pediatr 2019;65(2):169–175. DOI: 10.1093/tropej/fmy032.
  109. Inamadar AC, Palit A, Sampagavi VV, et al. Cutaneous manifestations of chikungunya fever: Observations made during a recent outbreak in South India. Int J Dermatol 2008;47(2):154–159. DOI: 10.1111/j.1365-4632.2008.03478.x.
  110. Prashant S, Kumar AS, Basheeruddin DD, et al. Cutaneous manifestations in patients suspected of chikungunya disease. Indian J Dermatol 2009;54(2):128–131. DOI: 10.4103/0019-5154.53186.
  111. Bandyopadhyay D, Ghosh SK. Mucocutaneous features of Chikungunya fever: A study from an outbreak in West Bengal, India. Int J Dermatol 2008;47(11):1148–1152. DOI: 10.1111/j.1365-4632.2008.03817.x.
  112. Centers for Disease Control and Prevention NCfEaZIDN, Division of Vector-Borne Diseases (DVBD). Chikungunya Virus: Clinical Evaluation & Disease. Centers for Disease Control and Prevention. Available from https://www.cdc.gov/chikungunya/hc/clinicalevaluation.html (Jan 12, 2023).
  113. Evans-Gilbert T. Vertically transmitted chikungunya, Zika and dengue virus infections: The pathogenesis from mother to fetus and the implications of co-infections and vaccine development. Int J Pediatr Adolesc Med 2020;7(3):107–111. DOI: 10.1016/j.ijpam.2019.05.004.
  114. Krutikov M, Manson J. Chikungunya virus infection: An update on joint manifestations and management. Rambam Maimonides Med J. Oct 31 2016;7(4):e0033. DOI: 10.5041/RMMJ.10260.
  115. Gopakumar H, Ramachandran S. Congenital chikungunya. J Clin Neonatol 2012;1(3):155–156. DOI: 10.4103/2249-4847.101704.
  116. Alvarado-Socarras JL, Ocampo-Gonzalez M, Vargas-Soler JA, et al. Congenital and neonatal chikungunya in Colombia. J Pediatric Infect Dis Soc 2016;5(3):e17–20. DOI: 10.1093/jpids/piw021.
  117. Vasani R, Kanhere S, Chaudhari K, et al. Congenital Chikungunya--A cause of neonatal hyperpigmentation. Pediatr Dermatol 2016;33(2):209–212. DOI: 10.1111/pde.12650.
  118. Srinivas SM, Pradeep GCM. Congenital chikungunya infection presenting with extensive dystrophic calcinosis cutis. Indian J Dermatol Venereol Leprol 2020;86(6):693–696. DOI: 10.4103/ijdvl.IJDVL_91_20.
  119. Ferreira F, da Silva ASV, Recht J, et al. Vertical transmission of chikungunya virus: A systematic review. PLoS One 2021;16(4):e0249166. DOI: 10.1371/journal.pone.0249166.
  120. Gupta V, Gupta N, Pandita A. Neonate with chikungunya. Clin Case Rep 2021;9(6):e04351. DOI: 10.1002/ccr3.4351.
  121. Gerardin P, Couderc T, Bintner M, et al. Chikungunya virus-associated encephalitis: A cohort study on La Reunion Island, 2005-2009. Neurology 2016;86(1):94–102. DOI: 10.1212/WNL.0000000000002234.
  122. Touret Y, Randrianaivo H, Michault A, et al. Early maternal-fetal transmission of the Chikungunya virus. Presse Med 2006;35(11 Pt 1):1656–1658. DOI: 10.1016/S0755-4982(06)74874-6.
  123. Ramful D, Carbonnier M, Pasquet M, et al. Mother-to-child transmission of chikungunya virus infection. Pediatr Infect Dis J 2007;26(9):811–815. DOI: 10.1097/INF.0b013e3180616d4f.
  124. Senanayake MP, Senanayake SM, Vidanage KK, et al. Vertical transmission in chikungunya infection. Ceylon Med J 2009;54(2): 47–50. DOI: 10.4038/cmj.v54i2.865.
  125. Shrivastava A, Waqar Beg M, Gujrati C, et al. Management of a vertically transmitted neonatal chikungunya thrombocytopenia. Indian J Pediatr 2011;78(8):1008–1009. DOI: 10.1007/s12098-011-0371-7.
  126. Gerardin P, Fianu A, Malvy D, et al. Perceived morbidity and community burden after a Chikungunya outbreak: the TELECHIK survey, a population-based cohort study. BMC Med 2011;9:5. DOI: 10.1186/1741-7015-9-5.
  127. Ratai EM, Annamalai L, Burdo T, et al. Brain creatine elevation and N-acetylaspartate reduction indicates neuronal dysfunction in the setting of enhanced glial energy metabolism in a macaque model of neuroAIDS. Magn Reson Med 2011;66(3):625–634. DOI: 10.1002/mrm.22821.
  128. Prevention. CfDCa. Chikungunya Virus - Diagnostic testing. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD). Available from https://www.cdc.gov/chikungunya/hc/diagnostic.html (Jan 11, 2023).
  129. Lakshmi V, Neeraja M, Subbalaxmi MV, et al. Clinical features and molecular diagnosis of chikungunya fever from South India. Clin Infect Dis 2008;46(9):1436–1442. DOI: 10.1086/529444.
  130. Kashyap RS, Morey SH, Chandak NH, et al. Detection of viral antigen, IgM and IgG antibodies in cerebrospinal fluid of chikungunya patients with neurological complications. Cerebrospinal Fluid Res 2010;7:12. DOI: 10.1186/1743-8454-7-12.
  131. Azami NA, Moi ML, Takasaki T. Neutralization assay for chikungunya virus infection: Plaque reduction neutralization test. Methods Mol Biol 2016;1426:273–282. DOI: 10.1007/978-1-4939-3618-2_25.
  132. Ramful D, Samperiz S, Fritel X, et al. Antibody kinetics in infants exposed to chikungunya virus infection during pregnancy reveals absence of congenital infection. J Infect Dis 2014;209(11):1726–1730. DOI: 10.1093/infdis/jit814.
  133. Shenoy S, Pradeep GC. Neurodevelopmental outcome of neonates with vertically transmitted chikungunya fever with encephalopathy. Indian Pediatr 2012;49(3):238–240. PMID: 22484743.
  134. Grivard P, Le Roux K, Laurent P, et al. Molecular and serological diagnosis of chikungunya virus infection. Pathol Biol (Paris) 2007;55(10):490–494. DOI: 10.1016/j.patbio.2007.07.002.
  135. Watanaveeradej V, Endy TP, Simasathien S, et al. The study transplacental chikungunya virus antibody kinetics, Thailand. Emerg Infect Dis 2006;12(11):1770–1772. DOI: 10.3201/eid1211.051560.
  136. Simon F, Savini H, Parola P. Chikungunya: A paradigm of emergence and globalization of vector-borne diseases. Med Clin North Am 2008;92(6):1323–1343, ix. DOI: 10.1016/j.mcna.2008.07.008.
  137. Cunha RVD, Trinta KS. Chikungunya virus: Clinical aspects and treatment – A Review. Mem Inst Oswaldo Cruz 2017;112(8):523–531. DOI: 10.1590/0074-02760170044.
  138. Chiam CW, Sam IC, Chan YF, et al. Immunohistochemical detection of chikungunya virus antigens in formalin-fixed and paraffin-embedded tissues. Methods Mol Biol 2016;1426:235–240. DOI: 10.1007/978-1-4939-3618-2_21.
  139. Meena SS, Arya S, Meena D, et al. Neonatal chikungunya: A case series. Trop Doct 2021;51(1):103–105. DOI: 10.1177/0049475520977011.
  140. Sumarmo, Talogo W, Asrin A, et al. Failure of hydrocortisone to affect outcome in dengue shock syndrome. Pediatrics 1982;69(1):45–49. PMID: 7054760.
  141. Ascher DP, Laws HF, Hayes CG. The use of intravenous gammaglobulin in dengue fever, a case report. Southeast Asian J Trop Med Public Health 1989;20(4):549–554. PMID: 2484144.
  142. Lyra PP, Campos GS, Bandeira ID, et al. Congenital chikungunya virus infection after an outbreak in Salvador, Bahia, Brazil. AJP Rep 2016;6(3):e299–300. DOI: 10.1055/s-0036-1587323.
  143. Correa DG, Freddi TAL, Werner H, et al. Brain MR imaging of patients with perinatal chikungunya virus infection. AJNR Am J Neuroradiol 2020;41(1):174–177. DOI: 10.3174/ajnr.A6339.
  144. Johnson BW, Russell BJ, Goodman CH. Laboratory diagnosis of chikungunya virus infections and commercial sources for diagnostic assays. J Infect Dis 2016;214(5):S471–S474. DOI: 10.1093/infdis/jiw274.
  145. Salomao N, Araujo L, Rabelo K, et al. Placental alterations in a chikungunya-virus-infected pregnant woman: A case report. Microorganisms 2022;10(5):872. DOI: 10.3390/microorganisms10050872.
  146. Salomao N, Rabelo K, Avvad-Portari E, et al. Histopathological and immunological characteristics of placentas infected with chikungunya virus. Front Microbiol 2022;13:1055536. DOI: 10.3389/fmicb.2022.1055536.
  147. Rezza G. Dengue and chikungunya: Long-distance spread and outbreaks in naive areas. Pathog Glob Health 2014;108(8):349–355. DOI: 10.1179/2047773214Y.0000000163.
  148. Goupil BA, Mores CN. A review of chikungunya virus-induced arthralgia: Clinical manifestations, therapeutics, and pathogenesis. Open Rheumatol J 2016;10:129–140. DOI: 10.2174/1874312901610010129.
  149. Roth A, Mercier A, Lepers C, et al. Concurrent outbreaks of dengue, chikungunya and Zika virus infections – An unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014. Euro Surveill 2014;19(41):20929. DOI: 10.2807/1560-7917.es2014.19.41.20929.
  150. Ratsitorahina M, Harisoa J, Ratovonjato J, et al. Outbreak of dengue and Chikungunya fevers, Toamasina, Madagascar, 2006. Emerg Infect Dis 2008;14(7):1135–1137. DOI: 10.3201/eid1407.071521.
  151. Nayar SK, Noridah O, Paranthaman V, et al. Co-infection of dengue virus and chikungunya virus in two patients with acute febrile illness. Med J Malaysia 2007;62(4):335–336. PMID: 18551940.
  152. Waggoner JJ, Gresh L, Vargas MJ, et al. Viremia and clinical presentation in nicaraguan patients infected with zika virus, chikungunya virus, and dengue virus. Clin Infect Dis 2016;63(12): 1584–1590. DOI: 10.1093/cid/ciw589.
  153. Gould LH, Osman MS, Farnon EC, et al. An outbreak of yellow fever with concurrent chikungunya virus transmission in South Kordofan, Sudan, 2005. Trans R Soc Trop Med Hyg 2008;102(12):1247–1254. DOI: 10.1016/j.trstmh.2008.04.014.
  154. Sreekanth R, Venugopal L, Arunkrishnan B, et al. Neonatal chikungunya encephalitis. Trop Doct 2022;52(1):199–201. DOI: 10.1177/00494755211063268.
  155. Simon F, Parola P, Grandadam M, et al. Chikungunya infection: An emerging rheumatism among travelers returned from Indian Ocean islands. Report of 47 cases. Medicine (Baltimore) 2007;86(3):123–137. DOI: 10.1097/MD/0b013e31806010a5.
  156. Simon F, Javelle E, Cabie A, et al. French guidelines for the management of chikungunya (acute and persistent presentations). November 2014. Med Mal Infect 2015;45(7):243–263. DOI: 10.1016/j.medmal.2015.05.007.
  157. Javelle E, Ribera A, Degasne I, et al. Specific management of post-chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006-2012. PLoS Negl Trop Dis 2015;9(3):e0003603. DOI: 10.1371/journal.pntd.0003603.
  158. Vouga M, Chiu YC, Pomar L, et al. Dengue, Zika and chikungunya during pregnancy: Pre- and post-travel advice and clinical management. J Travel Med 2019;26(8):taz077. DOI: 10.1093/jtm/taz077.
  159. Prevention CfDCa. Chikungunya Virus: Transmission. Centers for Disease Control and Prevention. Available from https://www.cdc.gov/chikungunya/transmission/index.html (Jan 23).
  160. de Paula Souza J, de Jesus BLS, Giusti AL, et al. Breastfeeding by chikungunya virus-infected dams confers resistance to challenge in the offspring. Transl Res 2022:S1931–5244(22)00280-8. DOI: 10.1016/j.trsl.2022.12.001.
  161. Villamil-Gomez W, Alba-Silvera L, Menco-Ramos A, et al. Congenital chikungunya virus infection in Sincelejo, Colombia: A case series. J Trop Pediatr 2015;61(5):386–392. DOI: 10.1093/tropej/fmv051.
  162. Ganesan K, Diwan A, Shankar SK, et al. Chikungunya encephalomyeloradiculitis: Report of 2 cases with neuroimaging and 1 case
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.