Register      Login

VOLUME 2 , ISSUE 1 ( January-March, 2023 ) > List of Articles


Mitochondrial Dynamics during Development

Ling He, Karl Johan Tronstad

Keywords : Archezoan, Inner membrane, Intermembrane space, Matrix, Mitochondrial DNA, Mitophagy, Neonate, Ontogeny, Outer membrane, Parkin

Citation Information : He L, Tronstad KJ. Mitochondrial Dynamics during Development. 2023; 2 (1):19-44.

DOI: 10.5005/jp-journals-11002-0053

License: CC BY-NC 4.0

Published Online: 07-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.

  1. Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014;505(7483):335–343. DOI: 10.1038/nature12985.
  2. Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab 2022;34(11):1620–1653. DOI: 10.1016/j.cmet.2022.10.008.
  3. Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol 2015;13:89. DOI: 10.1186/s12915-015-0201-x.
  4. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006;16(14):R551–R560. DOI: 10.1016/j.cub.2006.06.054.
  5. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999;283(5407):1482–1488. DOI: 10.1126/science.283.5407.1482.
  6. Lopez J, Tait SW. Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer 2015;112(6):957–962. DOI: 10.1038/bjc.2015.85.
  7. Munro D, Treberg JR. A radical shift in perspective: Mitochondria as regulators of reactive oxygen species. J Exp Biol 2017;220(Pt 7):1170–1180. DOI: 10.1242/jeb.132142.
  8. Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol. 2016;4:109. DOI: 10.3389/fcell.2016.00109.
  9. Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: A new role for mitochondrial function in aging. Redox Biol 2014;2: 936–944. DOI: 10.1016/j.redox.2014.07.005.
  10. Xia M, Zhang Y, Jin K, et al. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci 2019;9:27. DOI: 10.1186/s13578-019-0289-8.
  11. Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res 2013;112(8):1171–1188. DOI: 10.1161/CIRCRESAHA.111.300233.
  12. Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int 2013;2013:183024. DOI: 10.1155/2013/183024.
  13. Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med 2012;366(12):1132–1141. DOI: 10.1056/NEJMra1012478.
  14. Xie JH, Li YY, Jin J. The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol 2020;17(7):712–721. DOI: 10.1038/s41423-020-0480-1.
  15. Hulzebos CV, Sauer PJ. Energy requirements. Semin Fetal Neonatal Med 2007;12(1):2–10. DOI: 10.1016/j.siny.2006.10.008.
  16. Lai L, Leone TC, Zechner C, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev 2008;22(14):1948–1961. DOI: 10.1101/gad.1661708.
  17. El-Merhie N, Baumgart-Vogt E, Pilatz A, et al. Differential alterations of the mitochondrial morphology and respiratory chain complexes during postnatal development of the mouse Lung. Oxid Med Cell Longev 2017;2017:9169146. DOI: 10.1155/2017/9169146.
  18. Sutton R, Pollak JK. Hormone-initiated maturation of rat liver mitochondria after birth. Biochem J 1980;186(1):361–367. DOI: 10.1042/bj1860361.
  19. Bastin J, Delaval E, Freund N, et al. Effects of birth on energy metabolism in the rat kidney. Biochem J 1988;252(2):337–41. DOI: 10.1042/bj2520337.
  20. Shultz M. Mapping of medical acronyms and initialisms to Medical Subject Headings (MeSH) across selected systems. J Med Libr Assoc 2006;94(4):410–414. PMID: 17082832.
  21. Adl SM, Simpson AG, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol 2012;59(5):429–93. DOI: 10.1111/j.1550-7408.2012.00644.x.
  22. Zhang ZW, Cheng J, Xu F, et al. Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 2011;63(7):560–565. DOI: 10.1002/iub.490.
  23. Aryaman J, Johnston IG, Jones NS. Mitochondrial Heterogeneity. Front Genet. 2018;9:718. DOI: 10.3389/fgene.2018.00718.
  24. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 2014;15(10):634–646. DOI: 10.1038/nrm3877.
  25. Collins HE, Kane MS, Litovsky SH, et al. Mitochondrial morphology and mitophagy in heart diseases: Qualitative and quantitative analyses using transmission electron microscopy. Front Aging 2021;2:670267. DOI: 10.3389/fragi.2021.670267.
  26. Rube DA, van der Bliek AM. Mitochondrial morphology is dynamic and varied. Mol Cell Biochem 2004;256-257(1–2):331–339. DOI: 10.1023/b:mcbi.0000009879.01256.f6.
  27. Miettinen TP, Bjorklund M. Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev Cell 2016;39(3): 370–382. DOI: 10.1016/j.devcel.2016.09.004.
  28. Jensen RE. Control of mitochondrial shape. Curr Opin Cell Biol 2005;17(4):384–388. DOI: 10.1016/
  29. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012;337(6098):1062–1065. DOI: 10.1126/science.1219855.
  30. Chaldakov GN, Kokosharov PN. An intracristal structure in rat liver dumbbell-shaped mitochondria. Preliminary communication. Acta Morphol Acad Sci Hung 1973;21(2):149–154. PMID: 4744686.
  31. Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013;155(1):160–171. DOI: 10.1016/j.cell.2013.08.032.
  32. Englmeier R, Forster F. Cryo-electron tomography for the structural study of mitochondrial translation. Tissue Cell 2019;57:129–138. DOI: 10.1016/j.tice.2018.08.009.
  33. Rambold AS, Kostelecky B, Elia N, et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 2011;108(25):10190–10195. DOI: 10.1073/pnas.1107402108.
  34. Tronstad KJ, Nooteboom M, Nilsson LI, et al. Regulation and quantification of cellular mitochondrial morphology and content. Curr Pharm Des 2014;20(35):5634–5652. DOI: 10.2174/1381612820666140305230546.
  35. Hu D, Liu Z, Qi X. Mitochondrial quality control strategies: Potential therapeutic targets for neurodegenerative diseases? Front Neurosci 2021;15:746873. DOI: 10.3389/fnins.2021.746873.
  36. Roca-Portoles A, Tait SWG. Mitochondrial quality control: From molecule to organelle. Cell Mol Life Sci 2021;78(8):3853–3866. DOI: 10.1007/s00018-021-03775-0.
  37. Frederick RL, Shaw JM. Moving mitochondria: Establishing distribution of an essential organelle. Traffic 2007;8(12):1668–1675. DOI: 10.1111/j.1600-0854.2007.00644.x.
  38. Wu M, Kalyanasundaram A, Zhu J. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells. Int J Nanomedicine 2013;8:4033–4042. DOI: 10.2147/IJN.S52132.
  39. Bonora M, Patergnani S, Rimessi A, et al. ATP synthesis and storage. Purinergic Signal 2012;8(3):343–357. DOI: 10.1007/s11302-012-9305-8.
  40. Nikolaisen J, Nilsson LI, Pettersen IK, et al. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 2014;9(7):e101365. DOI: 10.1371/journal.pone.0101365.
  41. Ramachandran R. Mitochondrial dynamics: The dynamin superfamily and execution by collusion. Semin Cell Dev Biol 2018;76:201–212. DOI: 10.1016/j.semcdb.2017.07.039.
  42. Vasan K, Clutter M, Fernandez Dunne S, et al. Genes involved in maintaining mitochondrial membrane potential upon electron transport chain disruption. Front Cell Dev Biol 2022;10:781558. DOI: 10.3389/fcell.2022.781558.
  43. Mazur M, Kmita H, Wojtkowska M. The diversity of the mitochondrial outer membrane protein import channels: Emerging targets for modulation. Molecules 2021;26(13):4087. DOI: 10.3390/molecules26134087.
  44. Model K, Prinz T, Ruiz T, et al. Protein translocase of the outer mitochondrial membrane: Role of import receptors in the structural organization of the TOM complex. J Mol Biol 2002;316(3):657–666. DOI: 10.1006/jmbi.2001.5365.
  45. Zeth K. Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. Biochim Biophys Acta 2010;1797 (6–7):1292–1299. DOI: 10.1016/j.bbabio.2010.04.019.
  46. Meisinger C, Rissler M, Chacinska A, et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell 2004;7(1):61–71. DOI: 10.1016/j.devcel.2004.06.003.
  47. Doan KN, Grevel A, Martensson CU, et al. The mitochondrial import complex MIM functions as main translocase for alpha-Helical outer membrane proteins. Cell Rep 2020;31(4):107567. DOI: 10.1016/j.celrep.2020.107567.
  48. Kornmann B, Walter P. ERMES-mediated ER-mitochondria contacts: Molecular hubs for the regulation of mitochondrial biology. J Cell Sci 2010;123(Pt 9):1389–1393. DOI: 10.1242/jcs.058636.
  49. Weeber EJ, Levy M, Sampson MJ, et al. The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 2002;277(21):18891–18897. DOI: 10.1074/jbc.M201649200.
  50. Camara AKS, Zhou Y, Wen PC, et al. Mitochondrial VDAC1: A key gatekeeper as potential therapeutic target. Front Physiol 2017;8:460. DOI: 10.3389/fphys.2017.00460.
  51. Westphal D, Kluck RM, Dewson G. Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 2014;21(2):196–205. DOI: 10.1038/cdd.2013.139.
  52. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341 (Pt 2)(Pt 2):233–249. PMID: 10393078.
  53. Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: The most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021;11(3):210002. DOI: 10.1098/rsob.210002.
  54. Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: Mechanisms and driving forces. Front Mol Biosci 2017;4:83. DOI: 10.3389/fmolb.2017.00083.
  55. Vander Heiden MG, Chandel NS, Li XX, et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 2000;97(9):4666–4671. DOI: 10.1073/pnas.090082297.
  56. Walther DM, Bos MP, Rapaport D, Tommassen J. The mitochondrial porin, VDAC, has retained the ability to be assembled in the bacterial outer membrane. Mol Biol Evol 2010;27(4):887–895. DOI: 10.1093/molbev/msp294.
  57. Fox TD. Mitochondrial protein synthesis, import, and assembly. Genetics 2012;192(4):1203–1234. DOI: 10.1534/genetics.112. 141267.
  58. Peleh V, Cordat E, Herrmann JM. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. Elife 2016;5:e16177. DOI: 10.7554/eLife.16177.
  59. Chacinska A, Pfannschmidt S, Wiedemann N, et al. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 2004;23(19):3735–3746. DOI: 10.1038/sj.emboj.7600389.
  60. Fass D. The Erv family of sulfhydryl oxidases. Biochim Biophys Acta 2008;1783(4):557–566. DOI: 10.1016/j.bbamcr.2007.11.009.
  61. Hell K. The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim Biophys Acta 2008;1783(4):601–609. DOI: 10.1016/j.bbamcr.2007.12.005.
  62. Zimorski V, Ku C, Martin WF, et al. Endosymbiotic theory for organelle origins. Curr Opin Microbiol 2014;22:38–48. DOI: 10.1016/j.mib.2014.09.008.
  63. Khalimonchuk O, Winge DR. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. Biochim Biophys Acta 2008;1783(4):618–628. DOI: 10.1016/j.bbamcr.2007.10.016.
  64. Stojanovski D, Muller JM, Milenkovic D, et al. The MIA system for protein import into the mitochondrial intermembrane space. Biochim Biophys Acta 2008;1783(4):610–617. DOI: 10.1016/j.bbamcr.2007.10.004.
  65. Joubert F, Puff N. Mitochondrial cristae architecture and functions: Lessons from minimal model systems. Membranes (Basel) 2021;11(7):465. DOI: 10.3390/membranes11070465.
  66. Frazier AE, Chacinska A, Truscott KN, et al. Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 2003;23(21): 7818–7828. DOI: 10.1128/MCB.23.21.7818-7828.2003.
  67. Kamo N, Muratsugu M, Hongoh R, et al. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 1979;49(2):105–121. DOI: 10.1007/BF01868720.
  68. Klecker T, Westermann B. Pathways shaping the mitochondrial inner membrane. Open Biol 2021;11(12):210238. DOI: 10.1098/rsob.210238.
  69. Vogel F, Bornhovd C, Neupert W, et al. Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 2006;175(2):237–247. DOI: 10.1083/jcb.200605138.
  70. Wolf DM, Segawa M, Kondadi AK, et al. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 2019;38(22):e101056. DOI: 10.15252/embj.2018101056.
  71. Mannella CA. Consequences of Folding the Mitochondrial Inner Membrane. Front Physiol 2020;11:536. DOI: 10.3389/fphys.2020.00536.
  72. Darshi M, Mendiola VL, Mackey MR, et al. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 2011;286(4): 2918–2932. DOI: 10.1074/jbc.M110.171975.
  73. Xie J, Marusich MF, Souda P, et al. The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett 2007;581(18):3545–3549. DOI: 10.1016/j.febslet.2007.06.052.
  74. Madungwe NB, Feng Y, Lie M, et al. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 2018;315(1):C28–C43. DOI: 10.1152/ajpcell.00230.2017.
  75. Enriquez JA, Lenaz G. Coenzyme q and the respiratory chain: Coenzyme Q pool and mitochondrial supercomplexes. Mol Syndromol 2014;5(3-4):119–40. DOI: 10.1159/000363364.
  76. Zhao RZ, Jiang S, Zhang L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019;44(1):3–15. DOI: 10.3892/ijmm.2019.4188.
  77. Kondadi AK, Anand R, Reichert AS. Cristae Membrane Dynamics – A Paradigm Change. Trends Cell Biol 2020;30(12):923–936. DOI: 10.1016/j.tcb.2020.08.008.
  78. Cadena LR, Gahura O, Panicucci B, et al. Mitochondrial contact site and cristae organization system and F(1)F(O)-ATP synthase crosstalk Is a fundamental property of Mitochondrial mcristae. mSphere 2021;6(3):e0032721. DOI: 10.1128/mSphere.00327-21.
  79. Ramonet D, Perier C, Recasens A, et al. Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ 2013;20(1):77–85. DOI: 10.1038/cdd.2012.95.
  80. Grover GJ, Marone PA, Koetzner L, et al. Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease. Int J Biochem Cell Biol 2008;40(12):2698–2701. DOI: 10.1016/j.biocel.2008.06.013.
  81. Field CS, Baixauli F, Kyle RL, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-Intrinsic checkpoint for treg suppressive function. Cell Metab 2020;31(2):e5422–437 e5. DOI: 10.1016/j.cmet.2019.11.021.
  82. Wiederkehr A, Park KS, Dupont O, et al. Matrix alkalinization: A novel mitochondrial signal for sustained pancreatic beta-cell activation. EMBO J 2009;28(4):417–428. DOI: 10.1038/emboj.2008.302.
  83. Selivanov VA, Zeak JA, Roca J, et al. The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 2008;283(43):29292–29300. DOI: 10.1074/jbc.M801019200.
  84. Halestrap AP. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J 1987;244(1):159–164. DOI: 10.1042/bj2440159.
  85. Makarov VI, Khmelinskii I, Javadov S. Computational modeling of in vitro swelling of mitochondria: A biophysical approach. Molecules 2018;23(4):783. DOI: 10.3390/molecules23040783.
  86. Calamita G, Ferri D, Gena P, et al. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 2005;280(17):17149–17153. DOI: 10.1074/jbc.C400595200.
  87. Smith AC, Robinson AJ. A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol 2011;5:102. DOI: 10.1186/1752-0509-5-102.
  88. Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase – Assembly, regulation and role in human disease. Mitochondrion 2010;10(4):393–401. DOI: 10.1016/j.mito.2010.03.001.
  89. Cavalcanti JH, Esteves-Ferreira AA, Quinhones CG, et al. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol Evol 2014;6(10):2830–2848. DOI: 10.1093/gbe/evu221.
  90. D'Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem 2018;62(3):309–320. DOI: 10.1042/EBC20170102.
  91. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999;1410(2):103–123. DOI: 10.1016/s0005-2728(98)00161-3.
  92. Luo S, Valencia CA, Zhang J, et al. Biparental Inheritance of Mitochondrial DNA in Humans. Proc Natl Acad Sci USA 2018;115(51):13039–13044. DOI: 10.1073/pnas.1810946115.
  93. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: From biogenesis to functional networks. Nat Rev Mol Cell Biol 2019;20(5):267–284. DOI: 10.1038/s41580-018-0092-0.
  94. Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 2010;11:25–44. DOI: 10.1146/annurev-genom-082509-141720.
  95. Wang F, Zhang D, Zhang D, et al. Mitochondrial protein translation: Emerging roles and clinical significance in disease. Front Cell Dev Biol 2021;9:675465. DOI: 10.3389/fcell.2021.675465.
  96. Koripella RK, Sharma MR, Bhargava K, et al. Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nat Commun 2020;11(1):3830. DOI: 10.1038/s41467-020-17715-2.
  97. Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 2012;4(9):a011403. DOI: 10.1101/cshperspect.a011403.
  98. Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci USA 2015;112(33):10133–10138. DOI: 10.1073/pnas.1421379112.
  99. Boussau B, Karlberg EO, Frank AC, et al. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA 2004;101(26):9722–9727. DOI: 10.1073/pnas.0400975101.
  100. Gabaldon T. Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbioses” hypothesis. IUBMB Life. Dec 2018;70(12):1188–1196. DOI: 10.1002/iub.1950.
  101. Koonin EV. Archaeal ancestors of eukaryotes: Not so elusive any more. BMC Biol 2015;13:84. DOI: 10.1186/s12915-015-0194-5.
  102. Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol 2015;25(19):R911–R921. DOI: 10.1016/j.cub.2015.07.055.
  103. Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 2015;370(1678):20140330. DOI: 10.1098/rstb.2014.0330.
  104. Aanen DK, Eggleton P. Symbiogenesis: Beyond the endosymbiosis theory? J Theor Biol 2017;434:99–103. DOI: 10.1016/j.jtbi.2017.08.001.
  105. Shiflett AM, Johnson PJ. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol. 2010;64:409–29. DOI: 10.1146/annurev.micro.62.081307.162826.
  106. Gawryluk RMR, Kamikawa R, Stairs CW, et al. The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel nhizarian. Curr Biol 2016;26(20):2729–2738. DOI: 10.1016/j.cub.2016.08.025.
  107. Muller M, Mentel M, van Hellemond JJ, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012;76(2):444–495. DOI: 10.1128/MMBR.05024-11.
  108. Hrdy I, Hirt RP, Dolezal P, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 2004;432(7017):618–622. DOI: 10.1038/nature03149.
  109. Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 2010;365(1541):799–817. DOI: 10.1098/rstb.2009.0167.
  110. Embley TM, van der Giezen M, Horner DS, et al. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 2003;358(1429):191–201; Discussion 201–202. DOI: 10.1098/rstb.2002.1190.
  111. Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014;100:3–17. DOI: 10.1016/j.biochi.2013.11.018.
  112. Read AD, Bentley RE, Archer SL, et al. Mitochondrial iron- sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 2021;47:102164. DOI: 10.1016/j.redox.2021.102164.
  113. Roger AJ, Munoz-Gomez SA, Kamikawa R. The Origin and Diversification of Mitochondria. Curr Biol 2017;27(21):R1177–R1192. DOI: 10.1016/j.cub.2017.09.015.
  114. van der Giezen M, Slotboom DJ, Horner DS, et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: A common origin for both organelles. EMBO J 2002;21(4):572–579. DOI: 10.1093/emboj/21.4.572.
  115. Reznik E, Wang Q, La K, et al. Mitochondrial respiratory gene expression is suppressed in many cancers. Elife 2017;6: e21592. DOI: 10.7554/eLife.21592.
  116. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012;48(2):158–167. DOI: 10.1016/j.molcel.2012.09.025.
  117. Zachar I, Boza G. Endosymbiosis before eukaryotes: Mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020;77(18): 3503–3523. DOI: 10.1007/s00018-020-03462-6.
  118. Degli Esposti M. Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol 2014;6(12):3238–3251. DOI: 10.1093/gbe/evu257.
  119. Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 2007;7:106. DOI: 10.1186/1471-2180-7-106.
  120. Wang Z, Wu M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 2015;5:7949. DOI: 10.1038/srep07949.
  121. Thrash JC, Boyd A, Huggett MJ, et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 2011;1:13. DOI: 10.1038/srep00013.
  122. Fan L, Wu D, Goremykin V, et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within alphaproteobacteria. Nat Ecol Evol 2020;4(9):1213–1219. DOI: 10.1038/s41559-020-1239-x.
  123. Morris RM, Rappe MS, Connon SA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 2002;420(6917): 806–810. DOI: 10.1038/nature01240.
  124. Lopez-Perez M, Haro-Moreno JM, Coutinho FH, et al. The Evolutionary Success of the Marine Bacterium SAR11 Analyzed through a Metagenomic Perspective. mSystems 2020;5(5):e00605–e00620. DOI: 10.1128/mSystems.00605-20.
  125. Munoz-Gomez SA, Hess S, Burger G, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. Elife 2019;8:e42535. DOI: 10.7554/eLife.42535.
  126. Rodriguez-Ezpeleta N, Embley TM. The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria. PLoS One 2012;7(1):e30520. DOI: 10.1371/journal.pone.0030520.
  127. Grattepanche JD, Walker LM, Ott BM, et al. Microbial diversity in the eukaryotic SAR clade: Illuminating the darkness between morphology and molecular data. Bioessays 2018;40(4):e1700198. DOI: 10.1002/bies.201700198.
  128. Lio P, Goldman N. Models of molecular evolution and phylogeny. Genome Res 1998;8(12):1233–1244. DOI: 10.1101/gr.8.12.1233.
  129. McDonnell MD, Abbott D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 2009;5(5):e1000348. DOI: 10.1371/journal.pcbi.1000348.
  130. Ross MG, Russ C, Costello M, et al. Characterizing and measuring bias in sequence data. Genome Biol 2013;14(5):R51. DOI: 10.1186/gb-2013-14-5-r51.
  131. Philippe H, Zhou Y, Brinkmann H, et al. Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 2005;5:50. DOI: 10.1186/1471-2148-5-50.
  132. Philippe H, Brinkmann H, Lavrov DV, et al. Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biol 2011;9(3):e1000602. DOI: 10.1371/journal.pbio.1000602.
  133. Bergsten J. A review of long-branch attraction. Cladistics 2005;21(2):163–193. DOI: 10.1111/j.1096-0031.2005.00059.x.
  134. Revell LJ, Harmon LJ, Collar DC. Phylogenetic signal, evolutionary process, and rate. Syst Biol 2008;57(4):591–601. DOI: 10.1080/10635150802302427.
  135. Susko E, Roger AJ. Long branch attraction biases in phylogenetics. Syst Biol 2021;70(4):838–843. DOI: 10.1093/sysbio/syab001.
  136. Foster PG, Hickey DA. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 1999;48(3):284–290. DOI: 10.1007/pl00006471.
  137. Koumandou VL, Wickstead B, Ginger ML, et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2013;48(4):373–396. DOI: 10.3109/10409238.2013.821444.
  138. Roger AJ, Susko E, Leger MM. Evolution: Reconstructing the timeline of eukaryogenesis. Curr Biol 2021;31(4):R193–R196. DOI: 10.1016/j.cub.2020.12.035.
  139. Eme L, Spang A, Lombard J, et al. Archaea and the origin of eukaryotes. Nat Rev Microbiol 2017;15(12):711–723. DOI: 10.1038/nrmicro.2017.133.
  140. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541(7637):353–358. DOI: 10.1038/nature21031.
  141. Martin WF. Physiology, anaerobes, and the origin of mitosing cells 50 years on. J Theor Biol 2017;434:2–10. DOI: 10.1016/j.jtbi.2017.01.004.
  142. Nunoura T, Takaki Y, Kakuta J, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 2011;39(8): 3204–3223. DOI: 10.1093/nar/gkq1228.
  143. Lopez-Garcia P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017;434:20–33. DOI: 10.1016/j.jtbi.2017.02.031.
  144. Lopez-Garcia P, Moreira D. Open Questions on the Origin of Eukaryotes. Trends Ecol Evol 2015;30(11):697–708. DOI: 10.1016/j.tree.2015.09.005.
  145. Ryan DG, Frezza C, O'Neill LA. TCA cycle signalling and the evolution of eukaryotes. Curr Opin Biotechnol 2021;68:72–88. DOI: 10.1016/j.copbio.2020.09.014.
  146. Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol 2016;8(9):2663–2671. DOI: 10.1093/gbe/evw087.
  147. Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 2011;6:35. DOI: 10.1186/1745-6150-6-35.
  148. Torri A, Jaeger J, Pradeu T, et al. The origin of RNA interference: Adaptive or neutral evolution? PLoS Biol 2022;20(6):e3001715. DOI: 10.1371/journal.pbio.3001715.
  149. Koonin EV. The origin of introns and their role in eukaryogenesis: A compromise solution to the introns-early vs introns-late debate? Biol Direct 2006;1:22. DOI: 10.1186/1745-6150-1-22.
  150. Grau-Bove X, Sebe-Pedros A, Ruiz-Trillo I. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin. Mol Biol Evol 2015;32(3):726–739. DOI: 10.1093/molbev/msu334.
  151. Mills DB. The origin of phagocytosis in Earth history. Interface Focus 2020;10(4):20200019. DOI: 10.1098/rsfs.2020.0019.
  152. Wickstead B, Gull K. The evolution of the cytoskeleton. J Cell Biol 2011;194(4):513–525. DOI: 10.1083/jcb.201102065.
  153. Guan XL, Souza CM, Pichler H, et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell 2009;20(7):2083–2095. DOI: 10.1091/mbc.e08-11-1126.
  154. Poole AM, Gribaldo S. Eukaryotic origins: How and when was the mitochondrion acquired? Cold Spring Harb Perspect Biol 2014;6(12):a015990. DOI: 10.1101/cshperspect.a015990.
  155. Baum DA, Baum B. An inside-out origin for the eukaryotic cell. BMC Biol 2014;12:76. DOI: 10.1186/s12915-014-0076-2.
  156. Lopez-Garcia P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020;5(5):655–667. DOI: 10.1038/s41564-020-0710-4.
  157. Milner DS, Wideman JG, Stairs CW, et al. A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist. PLoS Biol 2021;19(4):e3001126. DOI: 10.1371/journal.pbio.3001126.
  158. Sharma LK, Lu J, Bai Y. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Curr Med Chem 2009;16(10):1266–1277. DOI: 10.2174/092986709787846578.
  159. Moparthi VK, Hagerhall C. The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 2011;72(5-6):484–497. DOI: 10.1007/s00239-011-9447-2.
  160. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016;73(1):79–94. DOI: 10.1007/s00018-015-2052-6.
  161. Cossart P, Helenius A. Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol 2014;6(8): a016972. DOI: 10.1101/cshperspect.a016972.
  162. Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 2008;1778(10):1978–2021. DOI: 10.1016/j.bbamem.2008.04.011.
  163. Lord C, Ferro-Novick S, Miller EA. The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi. Cold Spring Harb Perspect Biol 2013;5(2):a013367. DOI: 10.1101/cshperspect.a013367.
  164. Stroud MJ, Banerjee I, Veevers J, et al. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014;114(3):538–548. DOI: 10.1161/circresaha.114.301236.
  165. Jain S, Caforio A, Driessen AJ. Biosynthesis of archaeal membrane ether lipids. Front Microbiol. 2014;5:641. DOI: 10.3389/fmicb.2014.00641.
  166. Salvador-Castell M, Tourte M, Oger PM. In search for the membrane regulators of archaea. Int J Mol Sci 2019;20(18):4434. DOI: 10.3390/ijms20184434.
  167. Siliakus MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017;21(4):651–670. DOI: 10.1007/s00792-017-0939-x.
  168. Cole LW. The evolution of per-cell organelle number. Front Cell Dev Biol 2016;4:85. DOI: 10.3389/fcell.2016.00085.
  169. Hjort K, Goldberg AV, Tsaousis AD, et al. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010;365(1541):713–727. DOI: 10.1098/rstb.2009.0224.
  170. Wang Y, Palmfeldt J, Gregersen N, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem 2019;294(33):12380–12391. DOI: 10.1074/jbc.RA119.008680.
  171. O'Brien TW. Evolution of a protein-rich mitochondrial ribosome: Implications for human genetic disease. Gene 2002;286(1):73–79. DOI: 10.1016/s0378-1119(01)00808-3.
  172. Ferrari A, Del'Olio S, Barrientos A. The diseased mitoribosome. FEBS Lett 2021;595(8):1025–1061. DOI: 10.1002/1873-3468.14024.
  173. Cavalier-Smith T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci 2006;273(1596):1943–1952. DOI: 10.1098/rspb.2006.3531.
  174. Falkenberg M. Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem 2018;62(3):287–296. DOI: 10.1042/EBC20170100.
  175. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 2010;47:69–84. DOI: 10.1042/bse0470069.
  176. Kunze M, Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 2015;6:259. DOI: 10.3389/fphys.2015.00259.
  177. Avendano-Monsalve MC, Mendoza-Martinez AE, Ponce-Rojas JC, et al. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins alphabeta’-NAC and Sam37. J Biol Chem 2022;298(6):101984. DOI: 10.1016/j.jbc.2022.101984.
  178. Bolender N, Sickmann A, Wagner R, et al. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 2008;9(1):42–49. DOI: 10.1038/sj.embor.7401126.
  179. Diekert K, Kispal G, Guiard B, et al. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci USA 1999;96(21):11752–11757. DOI: 10.1073/pnas.96.21.11752.
  180. Craig EA. Hsp70 at the membrane: Driving protein translocation. BMC Biol 2018;16(1):11. DOI: 10.1186/s12915-017-0474-3.
  181. Ieva R, Heisswolf AK, Gebert M, et al. Mitochondrial inner membrane protease promotes assembly of presequence
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.