Register      Login

VOLUME 2 , ISSUE 1 ( January-March, 2023 ) > List of Articles


Extrauterine Growth Restriction in Preterm Very Low Birth Weight Infants: The Use of a Web-based System Designed for Computerized Prescribing of Parenteral Nutrition in Neonatal Intensive Care

Mario Motta, Salvatore Aversa, Morotti Francesco, Cesare Tomasi, Francesco Maria Risso

Keywords : Computerized prescribing, Extrauterine growth restriction, Newborn, Parenteral nutrition

Citation Information : Motta M, Aversa S, Francesco M, Tomasi C, Risso FM. Extrauterine Growth Restriction in Preterm Very Low Birth Weight Infants: The Use of a Web-based System Designed for Computerized Prescribing of Parenteral Nutrition in Neonatal Intensive Care. 2023; 2 (1):1-10.

DOI: 10.5005/jp-journals-11002-0052

License: CC BY-NC 4.0

Published Online: 07-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: Extrauterine growth restriction (EUGR) is a multifactorial condition that may lead to long-term consequences for preterm infants. Providing adequate nutrition is one of the keys to ameliorating growth. Technology can help clinicians with powerful tools. We evaluate the impact of a web-based software specifically designed for neonatal parenteral nutrition (PN) prescription on EUGR in a cohort of very low birth weight (VLBW) infants. Materials and methods: We retrospectively analyzed anthropometric measurements (AMs) and comorbidities in a cohort of 119 VLBW infants treated with PN for at least 5 consecutive days. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) standards were used to identify small for gestational age (SGA, birth weight < 10th centile) infants and to define EUGR. EUGR was defined as “cross-sectional” (AMs < 10th percentile at discharge) and “longitudinal” (loss in AMs Z-score from birth to discharge > 1 standard deviation [SD]). Results: Nutritional intakes were consistent with current available nutritional guidelines. There were significant differences in the measured incidence of EUGR depending on the adopted definition. The longitudinal definition appeared to be the most appropriate than the cross-sectional one for identifying postnatal growth failure in preterm infants. Lower lipid intake and longer durations of PN were risk factors for poor growth in weight and head circumference (HC). Metabolic disorders, such as cholestasis, hyperglycemia, and hypertriglyceridemia, had stronger links with lower AMs and longer PN needs than just the nutritional intakes. No relationships were observed between the most of comorbidities associated with prematurity and EUGR. Conclusion: A web-based system for the prescription of neonatal PN seems to be useful for ensuring adequate intakes in preterm infants. Further studies with larger sample sizes could be designed for evaluating the application of this software within a neonatal network and its effect on postnatal growth. Clinical significance: The use of an electronic prescribing system designed for neonatal care can help neonatologists in giving VLBW infants the correct intake of nutrients.

PDF Share
  1. Franz AR, Pohlandt F, Bode H, et al. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009;123(1):e101–e1019. DOI: 10.1542/peds.2008-1352.
  2. Ehrenkranz RA, Dusick AM, Vohr BR, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006;117(4):1253–1261. DOI: 10.1542/peds.2005-1368.
  3. Shah PS, Wong KY, Merko S, et al. Postnatal growth failure in preterm infants: Ascertainment and relation to long-term outcome. J Perinat Med 2006;34(6):484–489. DOI: 10.1515/JPM.2006.094.
  4. Guellec I, Lapillonne A, Marret S, et al. Effect of intra- and extrauterine growth on long-term neurologic outcomes of very preterm infants. J Pediatr 2016;175:93–99 e1. DOI: 10.1016/j.jpeds.2016.05.027.
  5. Zozaya C, Diaz C, de Pipaón MS. How should we define postnatal growth restriction in preterm infants? Neonatology 2018;114(2): 177–180. DOI: 10.1159/000489388.
  6. Clark RH, Thomas P, Peabody J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 2003;111(5 Pt 1):986–990. DOI: 10.1542/peds.111.5.986.
  7. Makker K, Ji Y, Hong X, et al. Antenatal and neonatal factors contributing to extra uterine growth failure (EUGR) among preterm infants in Boston Birth Cohort (BBC). J Perinatol 2021;41(5):1025–1032. DOI: 10.1038/s41372-021-00948-4.
  8. Dinerstein A, Nieto RM, Solana CL, et al. Early and aggressive nutritional strategy (parenteral and enteral) decreases postnatal growth failure in very low birth weight infants. J Perinatol 2006;26(7):436–442. DOI: 10.1038/
  9. Kumar RK, Singhal A, Vaidya U, et al. Optimizing nutrition in preterm low birth weight infants: Consensus summary. Front Nutr 2017;4:20. DOI: 10.3389/fnut.2017.00020.
  10. Henderickx JGE, Zwittink RD, Renes IB, et al. Maturation of the preterm gastrointestinal tract can be defined by host and microbial markers for digestion and barrier defense. Sci Rep 2021;11(1):12808. DOI: 10.1038/s41598-021-92222-y.
  11. Potts AL, Barr FE, Gregory DF, et al. Computerized physician order entry and medication errors in a pediatric critical care unit. Pediatrics 2004;113(1 Pt 1):59–63. DOI: 10.1542/peds.113.1.59.
  12. Hay WW Jr. Aggressive nutrition of the preterm infant. Curr Pediatr Rep Dec 2013;1(4):10.1007/s40124-013-0026-4. DOI: 10.1007/s40124-013-0026-4.
  13. Riskin A, Hartman C, Shamir R. Parenteral nutrition in very low birth weight preterm infants. Isr Med Assoc J 2015;17(5):310–315. PMID: 26137659.
  14. Alrifai MW, Mulherin DP, Weinberg ST, et al. Parenteral protein decision support system improves protein delivery in preterm infants: A randomized clinical trial. J Parenter Enteral Nutr 2018;42(1):219–224. DOI: 10.1002/jpen.1034.
  15. Boullata JI, Holcombe B, Sacks G, et al. Standardized competencies for parenteral nutrition order review and parenteral nutrition preparation, including compounding: The ASPEN model. Nutr Clin Pract 2016;31(4):548–555. DOI: 10.1177/0884533616653833.
  16. Agrawal A. Medication errors: Prevention using information technology systems. Br J Clin Pharmacol 2009;67(6):681–686. DOI: 10.1111/j.1365-2125.2009.03427.x.
  17. Franco KA, O'Mara K. Impact of computerized provider order entry on total parenteral nutrition in the neonatal intensive care unit. J Pediatr Pharmacol Ther 2016;21(4):339–345. DOI: 10.5863/1551-6776-21.4.339.
  18. Morgan C, Herwitker S, Badhawi I, et al. SCAMP: Standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: A phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care. BMC Pediatr 2011;11:53. DOI: 10.1186/1471-2431-11-53.
  19. Peila C, Spada E, Giuliani F, et al. Extrauterine growth restriction: Definitions and predictability of outcomes in a cohort of very low birth weight infants or preterm neonates. Nutrients 2020;12(5): 1224. DOI: 10.3390/nu12051224. DOI: 10.3390/nu12051224.
  20. Calkins KL, Venick RS, Devaskar SU. Complications associated with parenteral nutrition in the neonate. Clin Perinatol 2014;41(2):331–335. DOI: 10.1016/j.clp.2014.02.006.
  21. Mihatsch WA, Braegger C, Bronsky J, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin Nutr. 2018;37(6 Pt B):2303–2305. DOI: 10.1016/j.clnu.2018.05.029.
  22. Koletzko BV, Poindexter B, Uauy R. Nutritional care of preterm infants: scientific basis and practical guidelines. World review of nutrition and dietetics. 110. XI-XII. Karger: Basel (Switzerland) 2014. DOI: 10.1159/isbn.978-3-318-02641-2.
  23. Toney–Butler TJ, Nicolas S, Wilcox L. Dose Calculation Ratio and Proportion Method. StatPearls [Internet]; 2022. Available at:
  24. Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The newborn cross-sectional study of the INTERGROWTH-21st project. Lancet 2014;384(9946):857–568. DOI: 10.1016/S0140-6736(14)60932-6.
  25. Villar J, Giuliani F, Bhutta ZA, et al. Postnatal growth standards for preterm infants: The preterm postnatal follow-up study of the INTERGROWTH-21st project. Lancet Glob Health 2015;3(11): e681–e691. DOI:10.1016/S2214-109X(15)00163-1.
  26. Papageorghiou AT, Kennedy SH, Salomon LJ, et al. The INTERGROWTH-21st fetal growth standards: Toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol 2018;218(2S):S630–S640. DOI: 10.1016/j.ajog.2018.01.011.
  27. World Health Organization. WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry, Vol. 854. WHO technical report series. World Health Organization, 1995.
  28. Lan S, Fu H, Zhang R, et al. Extrauterine growth restriction in preterm infants: Postnatal growth pattern and physical development outcomes at age 3–6 years. Front Pediatr 2022;10:945422. DOI: 10.3389/fped.2022.945422.
  29. Andrade C. Z Scores, Standard Scores, and Composite Test Scores Explained. Indian J Psychol Med 2021;43(6):555–557. DOI: 10.1177/02537176211046525. DOI: 10.1177/02537176211046525.
  30. Roggero P, Gianni ML, Orsi A, et al. Implementation of nutritional strategies decreases postnatal growth restriction in preterm infants. PLoS One 2012;7(12):e51166. DOI: 10.1371/journal.pone.0051166.
  31. Satrom K, Gourley G. Cholestasis in preterm infants. Clin Perinatol 2016;43(2):355–373. DOI: 10.1016/j.clp.2016.01.012.
  32. Koletzko B, Goulet O, Hunt J, et al. 1. Guidelines on paediatric parenteral nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005;41(Suppl. 2):S1–S87. DOI: 10.1097/01.mpg.0000181841.07090.f4.
  33. Beardsall K, Vanhaesebrouck S, Ogilvy–Stuart AL, et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the NIRTURE study. J Pediatr 2010;157(5):715–719. e1–e3. DOI: 10.1016/j.jpeds.2010.04.032.
  34. Mihatsch W, Fewtrell M, Goulet O, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clin Nutr 2018;37(6 Pt B):2360–2365. DOI: 10.1016/j.clnu.2018.06.950.
  35. Shane AL, Sanchez PJ, Stoll BJ. Neonatal sepsis. Lancet 2017;390(10104):1770–1780. DOI: 10.1016/S0140-6736(17)31002-4.
  36. Network VO. Vermont Oxford Criteria: Manual of Operations. Part 2: Data definitions and infant data forms. Vermont Oxford Network, 2018.
  37. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163(7):1723–1729. DOI: 10.1164/ajrccm.163.7.2011060.
  38. International Committee for the Classification of Retinopathy of P. The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol 2005;123(7):991–999. DOI: 10.1001/archopht.123.7.991.
  39. Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92(4):529–534. DOI: 10.1016/s0022-3476(78)80282-0.
  40. Evans N. Diagnosis of patent ductus arteriosus in the preterm newborn. Arch Dis Child 1993;68(1 Spec. No. 58):58–61. DOI: 10.1136/adc.68.1_spec_no.58
  41. Singh R, Vaidya R, Ashwath R. Patent Ductus Arteriosus: A diagnostic and treatment dilemma. Newborn 2022;1(1):58–66. DOI: 10.5005/jp-journals-11002-0023.
  42. Nick TG. Descriptive statistics. Methods Mol Biol 2007;404:33–52. DOI: 10.1007/978-1-59745-530-5_3.
  43. Perme MP, Manevski D. Confidence intervals for the Mann–Whitney test. Stat Methods Med Res 2019;28(12):3755–3768. DOI: 10.1177/0962280218814556.
  44. Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor Dent Endod 2017;42(2):152–155. DOI: 10.5395/rde.2017.42.2.152.
  45. Nick TG, Campbell KM. Logistic regression. Methods Mol Biol 2007;404:273–301. DOI: 10.1007/978-1-59745-530-5_14.
  46. Greenland S, Senn SJ, Rothman KJ, et al. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur J Epidemiol 2016;31(4):337–350. DOI: 10.1007/s10654-016-0149-3.
  47. Schoonjans F, Zalata A, Depuydt CE, et al. MedCalc: A new computer program for medical statistics. Comput Methods Programs Biomed 1995;48(3):257–262. DOI: 10.1016/0169-2607(95)01703-8.
  48. Mihatsch W, Thome U, Saenz de Pipaon M. Update on calcium and phosphorus requirements of preterm infants and recommendations for enteral mineral intake. Nutrients 2021;13(5):1470. DOI: 10.3390/nu13051470.
  49. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin Med Insights Pediatr 2016;10:67–83. DOI: 10.4137/CMPed.S40070.
  50. Kim YJ, Shin SH, Cho H, et al. Extrauterine growth restriction in extremely preterm infants based on the INTERGROWTH-21st Project Preterm Postnatal Follow-up Study growth charts and the Fenton growth charts. Eur J Pediatr 2021;180(3):817–824. DOI: 10.1007/s00431-020-03796-0.
  51. Villar J, Knight HE, de Onis M, et al. Conceptual issues related to the construction of prescriptive standards for the evaluation of postnatal growth of preterm infants. Arch Dis Child 2010;95(12):1034–1038. DOI: 10.1136/adc.2009.175067.
  52. Ayers P, Adams S, Boullata J, et al. A.S.P.E.N. parenteral nutrition safety consensus recommendations. J Parenter Enteral Nutr 2014;38(3): 296–333. DOI: 10.1177/0148607113511992.
  53. Song JW, Chung KC. Observational studies: Cohort and case–control studies. Plast Reconstr Surg 2010;126(6):2234–2242. DOI: 10.1097/PRS.0b013e3181f44abc.
  54. Roberts MR, Ashrafzadeh S, Asgari MM. Research techniques made simple: Interpreting measures of association in clinical research. J Invest Dermatol 2019;139(3):502.e1–511.e1. DOI: 10.1016/j.jid.2018.12.023.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.