Newborn

Register      Login

VOLUME 2 , ISSUE 1 ( January-March, 2023 ) > List of Articles

EDITORIAL

Editorial

Citation Information :

DOI: 10.5005/newborn-2-1-iv

License: CC BY-NC 4.0

Published Online: 07-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

PDF Share
  1. Basu S, Tilak R, Kumar A. Multidrug-resistant Trichosporon: an unusual fungal sepsis in preterm neonates. Pathog Glob Health. 2015;109(4):202-206. doi:10.1179/2047773215Y.0000000019
  2. Dard C, Chemla C, Fricker-Hidalgo H, et al. Late diagnosis of congenital toxoplasmosis based on serological follow-up: A case report. Parasitol Int. 2017;66(2):186-189. doi:10.1016/j.parint.2016.12.004
  3. Goytia VK, Demmler GJ, Pannaraj PS, et al. An unusual cause of sepsis and meningitis in a neonate. Semin Pediatr Infect Dis. 2006;17(4):187, 225-7. doi:10.1053/j.spid.2006.08.003
  4. Keus A, Peeters DD, Bekker VV, et al. Neonatal Meningitis and Subdural Empyema Caused by an Unusual Pathogen. Pediatr Infect Dis J. 2019;38(12):e329-e331. doi:10.1097/INF.0000000000002482
  5. Kouadio F, Klinger G. Pneumonia, an unusual initial presentation of neonatal herpes infection. Case Rep Crit Care. 2019;2019:9594289. doi:10.1155/2019/9594289
  6. Maheshwari A, Stromquist CI, Pereda L, et al. Mixed infection with unusual fungi and staphylococcal species in two extremely premature neonates. J Perinatol. 2004;24(5):324-6. doi:10.1038/sj.jp.7211077
  7. McAllister MM, Funnell O, Donahoe SL, et al. Unusual presentation of neosporosis in a neonatal puppy from a litter of bulldogs. Aust Vet J. 2016;94(11):411-414. doi:10.1111/avj.12516
  8. Scheurer JM, Fanta ML, Colbenson GA, et al. Early-onset neonatal sepsis caused by vertical transmission of Pasteurella multocida. AJP Rep. 2022;12(2):e123-e126. doi:10.1055/a-1830-2903
  9. Sert A, Yazar A, Odabas D, et al. An unusual cause of fever in a neonate: influenza A (H1N1) virus pneumonia. Pediatr Pulmonol. 2010;45(7):734-736. doi:10.1002/ppul.21245
  10. Wood AS, Foraker EE, Di Pentima C. Molecular epidemiology in neonatal pasteurellosis. Pediatr Infect Dis J. 2013;32(12):1402. doi:10.1097/ INF.0000000000000004
  11. Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin North Am. 2013;60(2):367-389. doi:10.1016/j.pcl.2012.12.003
  12. Zou H, Jia X, He X, et al. Emerging threat of multidrug resistant pathogens from neonatal sepsis. Front Cell Infect Microbiol. 2021;11:694093. doi:10.3389/fcimb.2021.694093
  13. Marodi L. Neonatal innate immunity to infectious agents. Infect Immun. 2006;74(4):1999-2006. doi:10.1128/IAI.74.4.1999-2006.2006
  14. E SA-M. Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi J Biol Sci. 2021;28(1):962-969. doi:10.1016/j.sjbs.2020.11.007
  15. Shaapan RM. The common zoonotic protozoal diseases causing abortion. J Parasit Dis. 2016;40(4):1116-1129. doi:10.1007/s12639-015-0661-5
  16. Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014;10(9):1171-1184. doi:10.1586/17446 66X.2014.942288
  17. Tsafaras GP, Ntontsi P, Xanthou G. Advantages and limitations of the neonatal immune system. Front Pediatr. 2020;8:5. doi:10.3389/fped.2020.00005
  18. Sadeghi K, Berger A, Langgartner M, et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis. 2007;195(2):296-302. doi:10.1086/509892
  19. Johnson J, Akinboyo IC, Schaffzin JK. Infection prevention in the neonatal intensive care unit. Clin Perinatol. 2021;48(2):413-429. doi:10.1016/j.clp.2021.03.011
  20. Bhatta DR, Hosuru Subramanya S, Hamal D, et al. Bacterial contamination of neonatal intensive care units: How safe are the neonates? Antimicrob Resist Infect Control. 2021;10(1):26. doi:10.1186/s13756-021-00901-2
  21. Kumar S, Shankar B, Arya S, Deb M, Chellani H. Healthcare associated infections in neonatal intensive care unit and its correlation with environmental surveillance. J Infect Public Health. 2018;11(2):275-279. doi:10.1016/j.jiph.2017.08.005
  22. Baker RE, Mahmud AS, Miller IF, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20(4):193-205. doi:10.1038/s41579-021- 00639-z
  23. Shehab El-Din EM, El-Sokkary MM, Bassiouny MR, et al. Epidemiology of Neonatal Sepsis and Implicated Pathogens: A Study from Egypt. Biomed Res Int. 2015;2015:509484. doi:10.1155/2015/509484
  24. Oliva A, Carmona Y, de La CLE, et al. Characterization of neonatal infections by gram-Negative bacilli and associated risk factors. Havana, Cuba. Infect Dis Rep. 2021;13(1):219-229. doi:10.3390/idr13010025
  25. Aggarwal A, Garg N. Newer vaccines against mosquito-borne diseases. Indian J Pediatr. 2018;85(2):117-123. doi:10.1007/s12098-017-2383-4
  26. Lee H, Halverson S, Ezinwa N. Mosquito-borne diseases. Prim Care. 2018;45(3):393-407. doi:10.1016/j.pop.2018.05.001
  27. Weber DJ, Rutala WA. Zoonotic infections. Occup Med. 1999;14(2):247-284.
  28. Roiz D, Wilson AL, Scott TW, et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018;12(12):e0006845. doi:10.1371/journal.pntd.0006845
  29. Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 2012;53(3-4):289-305. doi:10.1093/ilar.53.3-4.289
  30. Lee HS, Barraza-Villarreal A, Hernandez-Vargas H, et al. Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr. 2013;98(2):480-487. doi:10.3945/ajcn.112.052241
  31. Everson TM, O'Shea TM, Burt A, et al. Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. Clin Epigenetics. 2020;12(1):151. doi:10.1186/s13148-020-00942-1
  32. Leff SS, Hoffman JA, Gullan RL. Intervention Integrity: New Paradigms and Applications. School Ment Health. 2009;1(3):103-106. doi:10.1007/s12310- 009-9013-x
  33. Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the sustainable development doals era: time for a revolution. Lancet Glob Health. 2018;6(11):e1196-e1252. doi:10.1016/S2214-109X(18)30386-3
  34. Kelly CJ, Karthikesalingam A, Suleyman M, et al. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi:10.1186/s12916-019-1426-2
  35. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243. doi:10.1136/svn- 2017-000101
  36. Jeyakumar T, McClure S, Lowe M, et al. An education framework for effective implementation of a health information system: Scoping Review. J Med Internet Res. 2021;23(2):e24691. doi:10.2196/24691
  37. Motta M, Aversa S, Morotti F, Maheshwari A, Tomasi C, Maria Risso F. Extrauterine growth restriction in preterm very low birth weight infants: The use of a web-based system designed for computerized prescribing of parenteral nutrition in neonatal intensive care. Newborn. 2023;2(1):1-10.
  38. Makker K, Ji Y, Hong X, et al. Antenatal and neonatal factors contributing to extra uterine growth failure (EUGR) among preterm infants in Boston Birth Cohort (BBC). J Perinatol. 2021;41(5):1025-1032. doi:10.1038/s41372-021-00948-4
  39. Gidi NW, Goldenberg RL, Nigussie AK, et al. Incidence and associated factors of extrauterine growth restriction (EUGR) in preterm infants, a crosssectional study in selected NICUs in Ethiopia. BMJ Paediatr Open. 2020;4(1):e000765. doi:10.1136/bmjpo-2020-000765
  40. Kaur P, Dudeja P. Pathophysiology of enteropathogenic Escherichia coli-induced diarrhea. Newborn. 2023;2(1):102-113.
  41. Ochoa TJ, Barletta F, Contreras C, et al. New insights into the epidemiology of enteropathogenic Escherichia coli infection. Trans R Soc Trop Med Hyg. 2008;102(9):852-856. doi:10.1016/j.trstmh.2008.03.017
  42. Hernandes RT, Elias WP, Vieira MA, et al. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett. 2009;297(2):137-149. doi:10.1111/j.1574-6968.2009.01664.x
  43. Gaytan MO, Martinez-Santos VI, Soto E, et al. Type three secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol. 2016;6:129. doi:10.3389/fcimb.2016.00129
  44. Hecht G, Hodges K, Gill RK, et al. Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2004;287(2):G370-8. doi:10.1152/ajpgi.00432.2003
  45. Ritchie JM, Waldor MK. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect Immun. 2005;73(3):1466-1474. doi:10.1128/IAI.73.3.1466-1474.2005
  46. Singh S, Panghal A, Mane S, et al. Congenital chikungunya virus infections. Newborn. 2023;2(1):45-59.
  47. Ethawi Y, Kasniya G, Al Baiti N, Mohammed R, Elzahra F, Huseynova R. Congenital zika virus infections. Newborn. 2023;2(1):91-101.
  48. Monteiro VVS, Navegantes-Lima KC, de Lemos AB, et al. Aedes-Chikungunya virus interaction: Key role of vector midguts microbiota and its saliva in the host infection. Front Microbiol. 2019;10:492. doi:10.3389/fmicb.2019.00492
  49. Bandyopadhyay D, Ghosh SK. Mucocutaneous manifestations of chikungunya fever. Indian J Dermatol. 2010;55(1):64-67. doi:10.4103/0019-5154.60356
  50. Gupta V, Gupta N, Pandita A. Neonate with chikungunya. Clin Case Rep. 2021;9(6):e04351. doi:10.1002/ccr3.4351
  51. Barr KL, Vaidhyanathan V. Chikungunya in infants and children: Is pathogenesis increasing? Viruses. 2019;11(3)doi:10.3390/v11030294
  52. Schwameis M, Buchtele N, Wadowski PP, et al. Chikungunya vaccines in development. Hum Vaccin Immunother. 2016;12(3):716-731. doi:10.1080/2 1645515.2015.1101197
  53. Erasmus JH, Rossi SL, Weaver SC. Development of vaccines for chikungunya fever. J Infect Dis. 2016;214(suppl 5):S488-S496. doi:10.1093/infdis/ jiw271
  54. Zhou TF, Lai ZT, Liu S, et al. Susceptibility and interactions between Aedes mosquitoes and Zika viruses. Insect Sci. 2021;28(5):1439-1451. doi:10.1111/1744-7917.12858
  55. Moore CA, Staples JE, Dobyns WB, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 2017;171(3):288-295. doi:10.1001/jamapediatrics.2016.3982
  56. Tebas P, Roberts CC, Muthumani K, et al. Safety and immunogenicity of an anti-Zika virus DNA vaccine. N Engl J Med. 2021;385(12):e35. doi:10.1056/ NEJMoa1708120
  57. Maheshwari A. Innate immune memory in macrophages. Newborn. 2023;2(1):60-79.
  58. He L, Tronstad KJ, Maheshwari A. Mitochondrial dynamics during development. Newborn. 2023;2(1):19-44.
  59. Mezu-Ndubuisi OJ, Maheshwari A. Role of macrophages in fetal development and perinatal disorders. Pediatr Res. 2021;90(3):513-523. doi:10.1038/ s41390-020-01209-4
  60. Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res. 2007;61(1):2-8. doi:10.1203/01.pdr.0000250274.68571.18
  61. MohanKumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun. 2019;10(1):3494. doi:10.1038/s41467-019-11199-5
  62. Marshall JS, Warrington R, Watson W, et al. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14(Suppl 2):49. doi:10.1186/s13223-018-0278-1
  63. Wu C, Xu Y, Zhao Y. Two kinds of macrophage memory: innate and adaptive immune-like macrophage memory. Cell Mol Immunol. 2022;19(7):852-854. doi:10.1038/s41423-022-00885-y
  64. He L, Maheshwari A. Mitochondria in early life. Curr Pediatr Rev. 2023;19(4):395-416. doi:10.2174/1573396319666221221110728
  65. Munoz-Gomez SA, Hess S, Burger G, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. Elife. 2019;8:e42535. doi:10.7554/eLife.42535
  66. Raimondi F, Yousef N, Migliaro F, et al. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res. 2021;90(3):524-531. doi:10.1038/s41390-018-0114-9
  67. Rath C, Suryawanshi P. Point of Care Neonatal Ultrasound - Head, Lung, Gut and Line Localization. Indian Pediatr. 2016;53(10):889-899. doi:10.1007/ s13312-016-0954-5
  68. Kameda T, Mizuma Y, Taniguchi H, et al. Point-of-care lung ultrasound for the assessment of pneumonia: a narrative review in the COVID-19 era. J Med Ultrason. 2021;48(1):31-43. doi:10.1007/s10396-020-01074-y
  69. Stanworth SJ. The evidence-based use of FFP and cryoprecipitate for abnormalities of coagulation tests and clinical coagulopathy. Hematology Am Soc Hematol Educ Program. 2007:179-86. doi:10.1182/asheducation-2007.1.179
  70. Holcomb JB, Fox EE, Zhang X, et al. Cryoprecipitate use in the PROMMTT study. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S31-39. doi:10.1097/ TA.0b013e31828fa3ed
  71. Nair PM, Rendo MJ, Reddoch-Cardenas KM, Burris JK, Meledeo MA, Cap AP. Recent advances in use of fresh frozen plasma, cryoprecipitate, immunoglobulins, and clotting factors for transfusion support in patients with hematologic disease. Semin Hematol. 2020;57(2):73-82. doi:10.1053/j. seminhematol.2020.07.006
  72. Kovacic Krizanic K, Pruller F, Rosskopf K, Payrat JM, Andresen S, et al. Preparation and storage of cryoprecipitate derived from amotosalen and UVA-treated apheresis plasma and assessment of in vitro quality parameters. Pathogens. 2022;11(7):805. doi:10.3390/pathogens11070805
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.