Register      Login

VOLUME 1 , ISSUE 4 ( October-December, 2022 ) > List of Articles


Fats in Human Milk: 2022 Updates on Chemical Composition

Keywords : Donor milk, Infants, Mother's own milk, Neonate, Neonatal intensive care unit, Newborn, Premature, Triglycerides

Citation Information : Fats in Human Milk: 2022 Updates on Chemical Composition. 2022; 1 (4):384-396.

DOI: 10.5005/jp-journals-11002-0050

License: CC BY-NC 4.0

Published Online: 23-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Human milk (HM) feedings are important for all newborn infants. Healthy term infants grow well with the mother's own milk (MOM), be it in direct breastfeeding or when fed expressed breastmilk. Premature and ill infants being treated/monitored in neonatal intensive care units (NICUs) also recover better when fed with HM diets, which can include MOM, donor milk (DM), or a combination of both. In terms of chemical composition, it contains 3–5% fat, 0.8–0.9% protein, 6.9–7.2% carbohydrates (calculated as lactose), and 0.2% mineral constituents. In this review, we present the latest information on HM fats, including triglycerides, phospholipids, triglycerides, cholesterol, glycoproteins, and enzymes. This article is intended to initiate a series of periodic updates on the scientific information available on HM fats. It contains some of our own research findings with an extensive review of the literature. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and from PubMed's Medical Subject Heading (MeSH) thesaurus. We then searched the databases PubMed, EMBASE, and Science Direct.

  1. Jensen RG, Hagerty MM, McMahon KE. Lipids of human milk and infant formulas: A review. Am J Clin Nutr 1978;31(6):990–1016. DOI: 10.1093/ajcn/31.6.990.
  2. Jenness R. The composition of human milk. Semin Perinatol 1979; 3(3):225–239. PMID: 392766.
  3. Valverde R, Dinerstein NA, Vain N. Mother's own milk and donor milk. World Rev Nutr Diet 2021;122:212–224. DOI: 10.1159/000514733.
  4. Martin CR, Ling PR, Blackburn GL. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016;8(5):279. DOI: 10.3390/nu8050279.
  5. Villamor-Martinez E, Pierro M, Cavallaro G, et al. Mother's own milk and bronchopulmonary dysplasia: A systematic review and meta-analysis. Front Pediatr 2019;7:224. DOI: 10.3389/fped.2019.00224.
  6. Arslanoglu S, Boquien CY, King C, et al. Fortification of human milk for preterm infants: Update and recommendations of the European Milk Bank Association (EMBA) Working Group on human milk fortification. Front Pediatr 2019;7:76. DOI: 10.3389/fped.2019.00076.
  7. Ferrarello D, Schumacher A, Anca R. Nurse-driven initiative to increase exclusive human milk feeding by using pasteurized donor human milk to treat hypoglycemic term neonates. Nurs Womens Health 2019;23(4):316–326. DOI: 10.1016/j.nwh.2019.05.001.
  8. (v2015B) SMfJCNQM. Exclusive breast milk feeding during the newborn's entire hospitalization.
  9. Fair FJ, Morrison A, Soltani H. The impact of baby friendly initiative accreditation: An overview of systematic reviews. Matern Child Nutr 2021;17(4):e13216. DOI: 10.1111/mcn.13216.
  10. Premkumar MH, Pammi M, Suresh G. Human milk-derived fortifier versus bovine milk-derived fortifier for prevention of mortality and morbidity in preterm neonates. Cochrane Database Syst Rev 7 2019;2019(11):CD013145. DOI: 10.1002/14651858.CD013145.pub2.
  11. Bushati C, Chan B, Harmeson Owen A, et al. Challenges in implementing exclusive human milk diet to extremely low-birth-weight infants in a level III neonatal intensive care unit. Nutr Clin Pract 2021;36(6):1198–1206. DOI: 10.1002/ncp.10625.
  12. Koletzko B. Human milk lipids. Ann Nutr Metab 2016;69(Suppl 2): 28–40. DOI: 10.1159/000452819.
  13. Amissah EA, Brown J, Harding JE. Fat supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst Rev 2020;2020(8):CD000341. DOI: 10.1002/14651858.CD000341.pub3.
  14. Manson WG, Weaver LT. Fat digestion in the neonate. Arch Dis Child Fetal Neonatal Ed 1997;76(3):F206–F211. DOI: 10.1136/fn.76.3.f206.
  15. Ballard O, Morrow AL. Human milk composition: Nutrients and bioactive factors. Pediatr Clin North Am 2013;60(1):49–74. DOI: 10.1016/j.pcl.2012.10.002.
  16. Nolan LS, Parks OB, Good M. A review of the immunomodulating components of maternal breast milk and protection against necrotizing enterocolitis. Nutrients 2019;12(1):14. DOI: 10.3390/nu1201 0014.
  17. Italianer MF, Naninck EFG, Roelants JA, et al. Circadian variation in human milk composition, a systematic review. Nutrients 2020; 12(8):2328. DOI: 10.3390/nu12082328.
  18. Rodriguez JM, Fernandez L, Verhasselt V. The GutBreast axis: Programming health for life. Nutrients 2021;13(2):606. DOI: 10.3390/nu13020606.
  19. Ratsika A, Codagnone MC, O'Mahony S, et al. Priming for life: Early life nutrition and the microbiota-gut-brain axis. Nutrients 2021;13(2):423. DOI: 10.3390/nu13020423.
  20. Ahmadian M, Duncan RE, Jaworski K, et al. Triacylglycerol metabolism in adipose tissue. Future Lipidol 2007;2(2):229–237. DOI: 10.2217/17460875.2.2.229.
  21. Eibensteiner F, Auer-Hackenberg L, Jilma B, et al. Growth, feeding tolerance and metabolism in extreme preterm infants under an exclusive human milk diet. Nutrients 2019;11(7):1443. DOI: 10.3390/nu11071443.
  22. Emken EA, Adlof RO, Hachey DL, et al. Incorporation of deuterium-labeled fatty acids into human milk, plasma, and lipoprotein phospholipids and cholesteryl esters. J Lipid Res 1989;30(3):395–402. PMID: 2723546.
  23. George AD, Gay MCL, Trengove RD, et al. Human milk lipidomics: Current techniques and methodologies. Nutrients 2018;10(9):1169. DOI: 10.3390/nu10091169.
  24. Lee H, Park H, Ha E, et al. Effect of breastfeeding duration on cognitive development in infants: 3-year follow-up study. J Korean Med Sci 2016;31(4):579–584. DOI: 10.3346/jkms.2016.31.4.579.
  25. Selvalatchmanan J, Rukmini AV, Ji S, et al. Variability of lipids in human milk. Metabolites 2021;11(2):104. DOI: 10.3390/metabo11020104.
  26. Mizuno K, Nishida Y, Taki M, et al. Is increased fat content of hindmilk due to the size or the number of milk fat globules? Int Breastfeed J 2009;4:7. DOI: 10.1186/1746-4358-4-7.
  27. Karupaiah T, Sundram K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr Metab (Lond) 2007;4:16. DOI: 10.1186/1743-7075-4-16.
  28. McConathy J, Owens MJ. Stereochemistry in drug action. Prim Care Companion J Clin Psychiatry 2003;5(2):70–73. DOI: 10.4088/pcc.v05n0202.
  29. Yuan T, Qi C, Dai X, et al. Triacylglycerol composition of breast milk during different lactation stages. J Agric Food Chem 2019;67(8): 2272–2278. DOI: 10.1021/acs.jafc.8b06554.
  30. Zhu H, Liang A, Wang X, et al. Comparative analysis of triglycerides from different regions and mature lactation periods in Chinese Human Milk Project (CHMP) study. Front Nutr 2021;8:798821. DOI: 10.3389/fnut.2021.798821.
  31. Innis SM. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr 2011;2(3):275–283. DOI: 10.3945/an.111.000448.
  32. Straarup EM, Lauritzen L, Faerk J, et al. The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr 2006;42(3):293–299. DOI: 10.1097/01.mpg.0000214155.51036.4f.
  33. Jensen RG. Lipids in human milk. Lipids 1999;34(12):1243–1271. DOI: 10.1007/s11745-999-0477-2.
  34. Breckenridge WC, Marai L, Kuksis A. Triglyceride structure of human milk fat. Can J Biochem 1969;47(8):761–769. DOI: 10.1139/o69-118.
  35. Carta G, Murru E, Banni S, et al. Palmitic acid: Physiological role, metabolism and nutritional implications. Front Physiol 2017;8:902. DOI: 10.3389/fphys.2017.00902.
  36. Giuffrida F, Fleith M, Goyer A, et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr 2022;61(4): 2167–2182. DOI: 10.1007/s00394-021-02788-6.
  37. Bar-Yoseph F, Lifshitz Y, Cohen T. Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot Essent Fatty Acids 2013;89(4):139–143. DOI: 10.1016/j.plefa.2013.03.002.
  38. Davidson BC, Cantrill RC. Fatty acid nomenclature. A short review. S Afr Med J 1985;67(16):633–634. DOI: 10.1002/chin.198542383.
  39. Hunter JE. Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 2001;36(7):655–668. DOI: 10.1007/s11745-001-0770-0.
  40. Valenzuela A, Nieto S, Sanhueza J, et al. Tissue accretion and milk content of docosahexaenoic acid in female rats after supplementation with different docosahexaenoic acid sources. Ann Nutr Metab 2005;49(5):325–332. DOI: 10.1159/000087337.
  41. Wu K, Gao R, Tian F, et al. Fatty acid positional distribution (sn-2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. Br J Nutr 2019;121(1):65–73. DOI: 10.1017/S0007114518002994.
  42. Lien EL. The role of fatty acid composition and positional distribution in fat absorption in infants. J Pediatr 1994;125(5 Pt 2):S62–S68. DOI: 10.1016/s0022-3476(06)80738-9.
  43. van Rooijen MA, Mensink RP. Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk markers – A systematic review. Nutrients 2020;12(3):615. DOI: 10.3390/nu12030615.
  44. Graham DY, Sackman JW. Solubility of calcium soaps of long-chain fatty acids in simulated intestinal environment. Dig Dis Sci 1983;28(8):733–736. DOI: 10.1007/BF01312564.
  45. Young RJ, Garrett RL. Effect of oleic and linoleic acids on the absorption of saturated fatty acids in the chick. J Nutr 1963;81(4): 321–329. DOI: 10.1093/jn/81.4.321.
  46. Yonezawa T, Yonekura S, Kobayashi Y, et al. Effects of long-chain fatty acids on cytosolic triacylglycerol accumulation and lipid droplet formation in primary cultured bovine mammary epithelial cells. J Dairy Sci 2004;87(8):2527–2534. DOI: 10.3168/jds.S0022-0302(04)73377-9.
  47. McManaman JL. Formation of milk lipids: A molecular perspective. Clin Lipidol 2009;4(3):391–401. DOI: 10.2217/clp.09.15.
  48. Aumeistere L, Ciprovica I, Zavadska D, et al. Impact of maternal diet on human milk composition among lactating women in Latvia. Medicina (Kaunas) 2019;55(5):173. DOI: 10.3390/medicina 55050173.
  49. Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering. Mol Biosyst 2015;11(1):38–59. DOI: 10.1039/c4mb00443d.
  50. Ritchie MK, Johnson LC, Clodfelter JE, et al. Crystal structure and substrate specificity of human thioesterase 2: Insights into the molecular basis for the modulation of fatty acid synthase. J Biol Chem 2016;291(7):3520–3530. DOI: 10.1074/jbc.M115.702597.
  51. Randhawa ZI, Naggert J, Blacher RW, et al. Amino acid sequence of the serine active-site region of the medium-chain S-acyl fatty acid synthetase thioester hydrolase from rat mammary gland. Eur J Biochem 1987;162(3):577–581. DOI: 10.1111/j.1432-1033.1987.tb10678.x.
  52. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014;99(3): 734S–741S. DOI: 10.3945/ajcn.113.072595.
  53. Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond) 2010;7:35. DOI: 10.1186/1743-7075-7-35.
  54. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008;7(6):489–503. DOI: 10.1038/nrd2589.
  55. Haunerland NH, Spener F. Fatty acid-binding proteins--insights from genetic manipulations. Prog Lipid Res 2004;43(4):328–349. DOI: 10.1016/j.plipres.2004.05.001.
  56. Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 2015;3:49. DOI: 10.3389/fcell.2015.00049.
  57. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 2019;20(3):137–155. DOI: 10.1038/s41580-018-0085-z.
  58. Farfan M, Alvarez A, Garate A, et al. Comparison of chemical and enzymatic interesterification of fully hydrogenated soybean oil and walnut oil to produce a fat base with adequate nutritional and physical characteristics. Food Technol Biotechnol 2015;53(3):361–366. DOI: 10.17113/ftb.
  59. Bourlieu C, Mahdoueni W, Paboeuf G, et al. Physico-chemical behaviors of human and bovine milk membrane extracts and their influence on gastric lipase adsorption. Biochimie 2020;169:95–105. DOI: 10.1016/j.biochi.2019.12.003.
  60. Xie W, Qi C. Interesterification of soybean oil and lard blends catalyzed by SBA-15-pr-NR(3)OH as a heterogeneous base catalyst. J Agric Food Chem 2013;61(14):3373–3381. DOI: 10.1021/jf400216z.
  61. Xie W, Zang X. Immobilized lipase on core-shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chem 2016;194: 1283–1292. DOI: 10.1016/j.foodchem.2015.09.009.
  62. Silva RCD, Colleran HL, Ibrahim SA. Milk fat globule membrane in infant nutrition: A dairy industry perspective. J Dairy Res 2021; 88(1):105–116. DOI: 10.1017/S0022029921000224.
  63. Knudsen J, Neergaard TB, Gaigg B, et al. Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. J Nutr 2000;130(2S Suppl):294S–298S. DOI: 10.1093/jn/130.2.294S.
  64. Hamosh M, Scanlon JW, Ganot D, et al. Fat digestion in the newborn. Characterization of lipase in gastric aspirates of premature and term infants. J Clin Invest 1981;67(3):838–846. DOI: 10.1172/jci110101.
  65. Hamosh M. The role of lingual lipase in neonatal fat digestion. Ciba Found Symp 1979;(70):69–98. DOI: 10.1002/9780470720530.ch5.
  66. Hamosh M. Lingual and gastric lipases. Nutrition 1990;6(6):421–428. PMID: 2134569.
  67. Hamosh M. A review. Fat digestion in the newborn: Role of lingual lipase and preduodenal digestion. Pediatr Res 1979;13(5 Pt 1): 615–622. DOI: 10.1203/00006450-197905000-00008.
  68. Olivecrona T, Hernell O. Human milk lipases and their possible role in fat digestion. Padiatr Padol 1976;11(4):600–604. PMID: 980524.
  69. Wardell JM, Wright AJ, Bardsley WG, et al. Bile salt-stimulated lipase and esterase activity in human milk after collection, storage, and heating: Nutritional implications. Pediatr Res 1984;18(4):382–386. DOI: 10.1203/00006450-198404000-00017.
  70. Mazzocchi A, D'Oria V, De Cosmi V, et al. The role of lipids in human milk and infant formulae. Nutrients 2018;10(5):567. DOI: 10.3390/nu10050567.
  71. Los-Rycharska E, Kieraszewicz Z, Czerwionka-Szaflarska M. Medium chain triglycerides (MCT) formulas in paediatric and allergological practice. Prz Gastroenterol 2016;11(4):226–231. DOI: 10.5114/pg. 2016.61374.
  72. Burge K, Vieira F, Eckert J, et al. Lipid composition, digestion, and absorption differences among neonatal feeding strategies: Potential implications for intestinal inflammation in preterm infants. Nutrients 2021;13(2):550. DOI: 10.3390/nu13020550.
  73. Delplanque B, Gibson R, Koletzko B, et al. Lipid quality in infant nutrition: Current knowledge and future opportunities. J Pediatr Gastroenterol Nutr 2015;61(1):8–17. DOI: 10.1097/MPG.0000000000 000818.
  74. Houten SM, Violante S, Ventura FV, et al. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol 2016;78:23–44. DOI: 10.1146/annurev-physiol-021115-105045.
  75. Wang Y, Liu Z, Han Y, et al. Medium chain triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoS One 2018;13(2):e0191182. DOI: 10.1371/journal.pone.0191182.
  76. Contarini G, Povolo M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int J Mol Sci 2013;14(2):2808–2831. DOI: 10.3390/ijms14022808.
  77. NC-IUBMB BNCoIa. On the nomenclature of fatty acids. 2022.
  78. Nelson RH, Mundi MS, Vlazny DT, et al. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes 2013;62(3):783–788. DOI: 10.2337/db12-0367.
  79. German JB, Dillard CJ. Saturated fats: A perspective from lactation and milk composition. Lipids 2010;45(10):915–923. DOI: 10.1007/s11745-010-3445-9.
  80. He X, McClorry S, Hernell O, et al. Digestion of human milk fat in healthy infants. Nutr Res 2020;83:15–29. DOI: 10.1016/j.nutres.2020.08.002.
  81. Page KA, Williamson A, Yu N, et al. Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 2009;58(5):1237–1244. DOI: 10.2337/db08-1557.
  82. Yuan T, Wang L, Jin J, et al. Role medium-chain fatty acids in the lipid metabolism of infants. Front Nutr 2022;9:804880. DOI: 10.3389/fnut.2022.804880.
  83. Mu H, Hoy CE. Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols. Lipids 2000;35(1):83–89. DOI: 10.1007/s11745-000-0498-x.
  84. Huang CB, Alimova Y, Myers TM, et al. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 2011;56(7):650–654. DOI: 10.1016/j.archoralbio.2011.01.011.
  85. Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res 2016;63:120–131. DOI: 10.1016/j.plipres.2016.05.002.
  86. Cockshutt AM, Absolom DR, Possmayer F. The role of palmitic acid in pulmonary surfactant: Enhancement of surface activity and prevention of inhibition by blood proteins. Biochim Biophys Acta 1991;1085(2):248–256. DOI: 10.1016/0005-2760(91)90101-m.
  87. Nguyen MTT, Kim J, Seo N, et al. Comprehensive analysis of fatty acids in human milk of four Asian countries. J Dairy Sci 2021;104(6): 6496–6507. DOI: 10.3168/jds.2020-18184.
  88. van de Vossenberg JL, Joblin KN. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett Appl Microbiol 2003;37(5): 424–428. DOI: 10.1046/j.1472-765x.2003.01421.x.
  89. Mancini A, Imperlini E, Nigro E, et al. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 2015;20(9):17339–17361. DOI: 10.3390/molecules200917339.
  90. Hernell O, Blackberg L. Digestion of human milk lipids: Physiologic significance of sn-2 monoacylglycerol hydrolysis by bile salt- stimulated lipase. Pediatr Res 1982;16(10):882–885. DOI: 10.1203/00006450-198210000-00016.
  91. Litmanovitz I, Davidson K, Eliakim A, et al. High beta-palmitate formula and bone strength in term infants: A randomized, double-blind, controlled trial. Calcif Tissue Int 2013;92(1):35–41. DOI: 10.1007/s00223-012-9664-8.
  92. Kennedy K, Fewtrell MS, Morley R, et al. Double-blind, randomized trial of a synthetic triacylglycerol in formula-fed term infants: Effects on stool biochemistry, stool characteristics, and bone mineralization. Am J Clin Nutr 1999;70(5):920–927. DOI: 10.1093/ajcn/70.5.920.
  93. Gardner AS, Rahman IA, Lai CT, et al. Changes in fatty acid composition of human milk in response to cold-like symptoms in the lactating mother and infant. Nutrients 2017;9(9):1034. DOI: 10.3390/nu9091034.
  94. Siziba LP, Lorenz L, Brenner H, et al. Changes in human milk fatty acid composition and maternal lifestyle-related factors over a decade: A comparison between the two Ulm Birth Cohort Studies. Br J Nutr 2021;126(2):228–235. DOI: 10.1017/S0007114520004006.
  95. Miliku K, Duan QL, Moraes TJ, et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD cohort study. Am J Clin Nutr 2019; 110(6):1370–1383. DOI: 10.1093/ajcn/nqz229.
  96. Arnould VM, Reding R, Bormann J, et al. Predictions of daily milk and fat yields, major groups of fatty acids, and C18:1 cis-9 from single milking data without a milking interval. Animals (Basel) 2015;5(3):643–661. DOI: 10.3390/ani5030377.
  97. Tyson J, Burchfield J, Sentance F, et al. Adaptation of feeding to a low fat yield in breast milk. Pediatrics 1992;89(2):215–220. PMID: 1734387.
  98. Mendonca MA, Araujo WMC, Borgo LA, et al. Lipid profile of different infant formulas for infants. PLoS One 2017;12(6):e0177812. DOI: 10.1371/journal.pone.0177812.
  99. Bobinski R, Bobinska J. Fatty acids of human milk – A review. Int J Vitam Nutr Res 2022;92(3–4):280–291. DOI: 10.1024/0300-9831/a000651.
  100. Di Maso M, Bravi F, Ferraroni M, et al. Adherence to mediterranean diet of breastfeeding mothers and fatty acids composition of their human milk: Results from the Italian MEDIDIET study. Front Nutr 2022;9:891376. DOI: 10.3389/fnut.2022.891376.
  101. Sanchez-Hernandez S, Esteban-Munoz A, Gimenez-Martinez R, et al. A comparison of changes in the fatty acid profile of human milk of Spanish lactating women during the first month of lactation using gas chromatography-mass spectrometry. A comparison with infant formulas. Nutrients 2019;11(12):3055. DOI: 10.3390/nu11123055.
  102. Piccinin E, Cariello M, De Santis S, et al. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients 2019;11(10). DOI: 10.3390/nu11102283.
  103. Samuel TM, Zhou Q, Giuffrida F, et al. Nutritional and non-nutritional composition of human milk is modulated by maternal, infant, and methodological factors. Front Nutr 2020;7:576133. DOI: 10.3389/fnut.2020.576133.
  104. Sioen I, van Lieshout L, Eilander A, et al. Systematic review on N-3 and N-6 polyunsaturated fatty acid intake in European countries in light of the current recommendations – Focus on specific population groups. Ann Nutr Metab 2017;70(1):39–50. DOI: 10.1159/000456723.
  105. Lopez-Lopez A, Lopez-Sabater MC, Campoy-Folgoso C, et al. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr 2002;56(12):1242–1254. DOI: 10.1038/sj.ejcn.1601470.
  106. Willatts P, Forsyth JS. The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot Essent Fatty Acids 2000;63(1–2):95–100. DOI: 10.1054/plef.2000.0198.
  107. Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr 2014;2(5):443–463. DOI: 10.1002/fsn3.121.
  108. Carlson SE, Colombo J. Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv Pediatr 2016;63(1):453–471. DOI: 10.1016/j.yapd.2016.04.011.
  109. Smith SL, Rouse CA. Docosahexaenoic acid and the preterm infant. Matern Health Neonatol Perinatol 2017;3(1):22. DOI: 10.1186/s40748-017-0061-1.
  110. Heath RJ, Klevebro S, Wood TR. Maternal and neonatal polyunsaturated fatty acid intake and risk of neurodevelopmental impairment in premature infants. Int J Mol Sci 2022;23(2). DOI: 10.3390/ijms23020700.
  111. Stark KD, Van Elswyk ME, Higgins MR, et al. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res 2016;63: 132–152. DOI: 10.1016/j.plipres.2016.05.001.
  112. Conway MC, McSorley EM, Mulhern MS, et al. The influence of fish consumption on serum n-3 polyunsaturated fatty acid (PUFA) concentrations in women of childbearing age: A randomised controlled trial (the iFish Study). Eur J Nutr 2021;60(3):1415–1427. DOI: 10.1007/s00394-020-02326-w.
  113. Gibson RA, Makrides M. Long-chain polyunsaturated fatty acids in breast milk: Are they essential? Adv Exp Med Biol 2001;501:375–383. DOI: 10.1007/978-1-4615-1371-1_46.
  114. Bzikowska-Jura A, Czerwonogrodzka-Senczyna A, Jasinska-Melon E, et al. The concentration of omega-3 fatty acids in human milk is related to their habitual but not current intake. Nutrients 2019; 11(7):1585. DOI: 10.3390/nu11071585.
  115. Floris LM, Stahl B, Abrahamse-Berkeveld M, et al. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids 2020;156:102023. DOI: 10.1016/j.plefa.2019. 102023.
  116. Uauy R, Hoffman DR, Peirano P, et al. Essential fatty acids in visual and brain development. Lipids 2001;36(9):885–895. DOI: 10.1007/s11745-001-0798-1.
  117. Agostoni C, Berni Canani R, Fairweather-Tait S. Scientific opinion on the essential composition of infant and follow-on formulae. EFSA J 2014;12(4):3760. DOI: 10.2903/j.efsa.2014.3760.
  118. Le HD, Meisel JA, de Meijer VE, et al. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 2009;81(2–3):165–170. DOI: 10.1016/j.plefa.2009.05.020.
  119. Sabel KG, Lundqvist-Persson C, Bona E, et al. Fatty acid patterns early after premature birth, simultaneously analysed in mothers’ food, breast milk and serum phospholipids of mothers and infants. Lipids Health Dis 2009;8:20. DOI: 10.1186/1476-511X-8-20.
  120. Demmelmair H, Koletzko B. Perinatal polyunsaturated fatty acid status and obesity risk. Nutrients 2021;13(11):3882. DOI: 10.3390/nu13113882.
  121. Pluymen LPM, Dalmeijer GW, Smit HA, et al. Long-chain polyunsaturated fatty acids in infant formula and cardiovascular markers in childhood. Matern Child Nutr 2018;14(2):e12523. DOI: 10.1111/mcn.12523.
  122. Bopp M, Lovelady C, Hunter C, et al. Maternal diet and exercise: Effects on long-chain polyunsaturated fatty acid concentrations in breast milk. J Am Diet Assoc 2005;105(7):1098–1103. DOI: 10.1016/j.jada.2005.04.004.
  123. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol 2016;785:144–155. DOI: 10.1016/j.ejphar.2015.11.001.
  124. Yilmaz JL, Lim ZL, Beganovic M, et al. Determination of substrate preferences for desaturases and elongases for production of docosahexaenoic acid from oleic acid in engineered canola. Lipids 2017;52(3):207–222. DOI: 10.1007/s11745-017-4235-4.
  125. Roszer T. Co-evolution of breast milk lipid signaling and thermogenic adipose tissue. Biomolecules 2021;11(11):1705. DOI: 10.3390/biom 11111705.
  126. Smiddy MA, Huppertz T, van Ruth SM. Triacylglycerol and melting profiles of milk fat from several species. Int Dairy J 2012;24(2):64–69. DOI: 10.1016/j.idairyj.2011.07.001.
  127. Rodriguez-Cruz M, Tovar AR, Palacios-Gonzalez B, et al. Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: Role of Delta5 and Delta6 desaturases, SREBP-1, PPARalpha, and PGC-1. J Lipid Res 2006;47(3):553–560. DOI: 10.1194/jlr.M500407-JLR200.
  128. Suburu J, Gu Z, Chen H, et al. Fatty acid metabolism: Implications for diet, genetic variation, and disease. Food Biosci 2013;4:1–12. DOI: 10.1016/j.fbio.2013.07.003.
  129. Salem N, Jr., Van Dael P. Arachidonic acid in human milk. Nutrients 2020;12(3):626. DOI: 10.3390/nu12030626.
  130. van Wezel-Meijler G, van der Knaap MS, Huisman J, et al. Dietary supplementation of long-chain polyunsaturated fatty acids in preterm infants: Effects on cerebral maturation. Acta Paediatr 2002;91(9):942–950. DOI: 10.1080/080352502760272632.
  131. Lauritzen L, Brambilla P, Mazzocchi A, et al. DHA effects in brain development and function. Nutrients 2016;8(1):6. DOI: 10.3390/nu8010006.
  132. Zarate R, El Jaber-Vazdekis N, Tejera N, et al. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med 2017;6(1):25. DOI: 10.1186/s40169-017-0153-6.
  133. Miles EA, Childs CE, Calder PC. Long-chain polyunsaturated fatty acids (LCPUFAs) and the developing immune system: A narrative review. Nutrients 2021;13(1):247. DOI: 10.3390/nu13010247.
  134. Czosnykowska-Lukacka M, Lis-Kuberka J, Krolak-Olejnik B, et al. Changes in human milk immunoglobulin profile during prolonged lactation. Front Pediatr 2020;8:428. DOI: 10.3389/fped.2020.00428.
  135. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016;1863(10):2422–2435. DOI: 10.1016/j.bbamcr.2016.01.023.
  136. Ramaswamy M, Anthony Skrinska V, Fayez Mitri R, et al. Diagnosis of carnitine deficiency in extremely preterm neonates related to parenteral nutrition: Two step newborn screening approach. Int J Neonatal Screen 2019;5(3):29. DOI: 10.3390/ijns5030029.
  137. Van Aerde JE. In preterm infants, does the supplementation of carnitine to parenteral nutrition improve the following clinical outcomes: Growth, lipid metabolism and apneic spells?: Part B: Clinical commentary. Paediatr Child Health 2004;9(8):573. DOI: 10.1093/pch/9.8.573.
  138. Cairns PA, Stalker DJ. Carnitine supplementation of parenterally fed neonates. Cochrane Database Syst Rev 2000;2000(4):CD000950. DOI: 10.1002/14651858.CD000950.
  139. Yaron S, Shachar D, Abramas L, et al. Effect of high beta-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr 2013;56(4):376–381. DOI: 10.1097/MPG.0b013e31827e1ee2.
  140. Wu W, Zhao A, Liu B, et al. Neurodevelopmental outcomes and gut bifidobacteria in term infants fed an infant formula containing high sn-2 palmitate: A cluster randomized clinical trial. Nutrients 2021;13(2):693. DOI: 10.3390/nu13020693.
  141. Peng Y, Zhou T, Wang Q, et al. Fatty acid composition of diet, cord blood and breast milk in Chinese mothers with different dietary habits. Prostaglandins Leukot Essent Fatty Acids 2009;81(5–6): 325–330. DOI: 10.1016/j.plefa.2009.07.004.
  142. Juber BA, Jackson KH, Johnson KB, et al. Breast milk DHA levels may increase after informing women: A community-based cohort study from South Dakota USA. Int Breastfeed J 2016;12:7. DOI: 10.1186/s13006-016-0099-0.
  143. van Goor SA, Schaafsma A, Erwich JJ, et al. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio. Prostaglandins Leukot Essent Fatty Acids 2010;82(1):15–20. DOI: 10.1016/j.plefa.2009.11.004.
  144. Luxwolda MF, Kuipers RS, Sango WS, et al. A maternal erythrocyte DHA content of approximately 6 g% is the DHA status at which intrauterine DHA biomagnifications turns into bioattenuation and postnatal infant DHA equilibrium is reached. Eur J Nutr 2012; 51(6):665–675. DOI: 10.1007/s00394-011-0245-9.
  145. Weseler AR, Dirix CE, Bruins MJ, et al. Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk. J Nutr 2008;138(11):2190–2197. DOI: 10.3945/jn.108.089318.
  146. Smit EN, Koopmann M, Boersma ER, et al. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 2000;62(6):335–340. DOI: 10.1054/plef.2000.0163.
  147. van Goor SA, Dijck-Brouwer DA, Erwich JJ, et al. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months. Prostaglandins Leukot Essent Fatty Acids 2011;84(5–6):139–146. DOI: 10.1016/j.plefa.2011.01.002.
  148. De Roos B, Mavrommatis Y, Brouwer IA. Long-chain n-3 polyunsaturated fatty acids: New insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol 2009; 158(2):413–428. DOI: 10.1111/j.1476-5381.2009.00189.x.
  149. Richard C, Calder PC. Docosahexaenoic acid. Adv Nutr 2016;7(6): 1139–1141. DOI: 10.3945/an.116.012963.
  150. Tanaka K, Farooqui AA, Siddiqi NJ, et al. Effects of docosahexaenoic acid on neurotransmission. Biomol Ther (Seoul) 2012;20(2):152–157. DOI: 10.4062/biomolther.2012.20.2.152.
  151. Jeffrey BG, Weisinger HS, Neuringer M, et al. The role of docosahexaenoic acid in retinal function. Lipids 2001;36(9):859–871. DOI: 10.1007/s11745-001-0796-3.
  152. Peters BD, Voineskos AN, Szeszko PR, et al. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids. J Neurosci 2014;34(18):6367–6376. DOI: 10.1523/JNEUROSCI.2818-13.2014.
  153. Koletzko B, Agostoni C, Carlson SE, et al. Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr 2001;90(4):460–464. PMID: 11332943.
  154. Granot E, Jakobovich E, Rabinowitz R, et al. DHAD supplementation during pregnancy and lactation affects infants’ cellular but not humoral immune response. Mediators Inflamm 2011;2011:493925. DOI: 10.1155/2011/493925.
  155. Jensen CL, Maude M, Anderson RE, et al. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am J Clin Nutr 2000;71(1 Suppl):292S–299S. DOI: 10.1093/ajcn/71.1.292s.
  156. Sherry CL, Oliver JS, Marriage BJ. Docosahexaenoic acid supplementation in lactating women increases breast milk and plasma docosahexaenoic acid concentrations and alters infant omega 6:3 fatty acid ratio. Prostaglandins Leukot Essent Fatty Acids 2015;95: 63–69. DOI: 10.1016/j.plefa.2015.01.005.
  157. Gibson RA, Neumann MA, Makrides M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur J Clin Nutr 1997;51(9):578–584. DOI: 10.1038/sj.ejcn.1600446.
  158. Marc I, Plourde M, Lucas M, et al. Early docosahexaenoic acid supplementation of mothers during lactation leads to high plasma concentrations in very preterm infants. J Nutr 2011;141(2):231–236. DOI: 10.3945/jn.110.125880.
  159. Basak S, Mallick R, Duttaroy AK. Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment. Nutrients 2020;12(12):3615. DOI: 10.3390/nu12123615.
  160. Khandelwal S, Kondal D, Chaudhry M, et al. Effect of maternal docosahexaenoic acid (DHA) supplementation on offspring neurodevelopment at 12 months in India: A randomized controlled trial. Nutrients 2020;12(10). DOI: 10.3390/nu12103041.
  161. Greenberg JA, Bell SJ, Ausdal WV. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol Fall 2008;1(4):162–169. PMCID: PMC2621042.
  162. Salas Lorenzo I, Chisaguano Tonato AM, de la Garza Puentes A, et al. The effect of an infant formula supplemented with AA and DHA on fatty acid levels of infants with different FADS genotypes: The COGNIS study. Nutrients 2019;11(3):602. DOI: 10.3390/nu 11030602.
  163. Lien EL, Richard C, Hoffman DR. DHA and ARA addition to infant formula: Current status and future research directions. P
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.