Register      Login

VOLUME 1 , ISSUE 4 ( October-December, 2022 ) > List of Articles


Quantum Cryptography for Securing Personal Health Information in Hospitals

Keywords : Cryptographic systems, Health information, Healthcare, Hospital, Newborn

Citation Information : Quantum Cryptography for Securing Personal Health Information in Hospitals. 2022; 1 (4):333-339.

DOI: 10.5005/jp-journals-11002-0043

License: CC BY-NC 4.0

Published Online: 23-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Healthcare systems widely use information technology (IT) for system authentication (digital signatures), web surfing, e-mails, instant messaging, protecting data at rest, Voice over Internet Protocol (VoIP) telephony, and cellular telephony. To protect patient identification and healthcare information, cryptographic systems are widely used to secure these data from malicious third parties (adversaries). In our healthcare systems, we have had reasonable success in the efficient storage of the information of our patients and their families, in its timely retrieval, and in ensuring its safety from adversaries. However, the data are increasing rapidly and our current computational systems could be inadequate in the not-so-distant future. In this context, there is a need for novel solutions. One possibility can be seen in quantum computing (QC) algorithms/devices that can provide elegant solutions based on subatomic interactions. In this review, we have summarized current information on the need, current options, and future possibilities for the use of QC algorithms/devices in large data systems such as healthcare. This article combines peer-reviewed evidence from our own clinical studies with the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.

  1. Liu X, Sutton PR, McKenna R, et al. Evaluation of Secure Messaging Applications for a Health Care System: A Case Study. Appl Clin Inform 2019;10(1):140–150. DOI: 10.1055/s-0039-1678607.
  2. De Moor G, Claerhout B, De Meyer F. Implementation framework for digital signatures for electronic data interchange in healthcare. Stud Health Technol Inform 2004;110:90–111. PMID: 15853257.
  3. Kane B, Sands DZ. Guidelines for the clinical use of electronic mail with patients. The AMIA Internet Working Group, Task Force on Guidelines for the Use of Clinic–Patient Electronic Mail. J Am Med Inform Assoc 1998;5(1):104–111. DOI: 10.1136/jamia.1998.0050104.
  4. Donaldson A. Policy for cryptography in healthcare: A view from the NHS. Int J Med Inform 2000;60(2):105–110. DOI: 10.1016/s1386-5056(00)00109-x.
  5. He Y, Aliyu A, Evans M, et al. Health care cybersecurity challenges and solutions under the climate of COVID-19: Scoping review. J Med Internet Res 2021;23(4):e21747. DOI: 10.2196/21747.
  6. Yu YW, Weber GM. Balancing accuracy and privacy in federated queries of clinical data repositories: Algorithm development and validation. J Med Internet Res 2020;22(11):e18735. DOI: 10.2196/18735.
  7. Bos JW, Lauter K, Naehrig M. Private predictive analysis on encrypted medical data. J Biomed Inform 2014;50:234–243. DOI: 10.1016/j.jbi.2014.04.003.
  8. Mohammed EA, Slack JC, Naugler CT. Generating unique IDs from patient identification data using security models. J Pathol Inform 2016;7:55. DOI: 10.4103/2153-3539.197203.
  9. Malmurugan N, Nelson SC, Altuwairiqi M, et al. Hybrid encryption method for health monitoring systems based on machine learning. Comput Intell Neurosci 2022;2022:7348488. DOI: 10.1155/2022/7348488.
  10. Filkins BL, Kim JY, Roberts B, et al. Privacy and security in the era of digital health: What should translational researchers know and do about it? Am J Transl Res 2016;8(3):1560–1580. PMID: 27186282.
  11. Asai A, Konno M, Taniguchi M, et al. Computational healthcare: Present and future perspectives (Review). Exp Ther Med 2021;22(6):1351. DOI: 10.3892/etm.2021.10786.
  12. Tariq RA, Hackert PB. Patient Confidentiality. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.
  13. Yang L, Brome CR, Butterworth JS, et al. Invited article: Development of high-field superconducting Ioffe magnetic traps. Rev Sci Instrum 2008;79(3):031301. DOI: 10.1063/1.2897133.
  14. Solenov D, Brieler J, Scherrer JF. The Potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Mo Med 2018;115(5):463–467. PMID: 30385997.
  15. Tim Hollebeek. How long before quantum computers break encryption? Available at: Accessed date: 31 October 2022.
  16. Vinod Vaikuntanathan. Quantum computing: The new moonshot in the cyber space race Available at: Accessed date: 31 October 2022.
  17. Brendyn Lotz. What does quantum computing mean for cybersecurity, healthcare and the internet? Available at: Accessed date: 31 October 2022.
  18. Gulbahar B. Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrodinger equations. Sci Rep 2020;10(1):10968. DOI: 10.1038/s41598-020-67364-0.
  19. Kuhn MG. Some introductory notes on quantum computing. Available at: 2000. Accessed date: 31 October 2022.
  20. Sengupta K, Srivastava PR. Quantum algorithm for quicker clinical prognostic analysis: An application and experimental study using CT scan images of COVID-19 patients. BMC Med Inform Decis Mak 2021;21(1):227. DOI: 10.1186/s12911-021-01588-6.
  21. Mallow GM, Hornung A, Barajas JN, et al. Quantum computing: The future of big data and artificial intelligence in spine. Spine Surg Relat Res 2022;6(2):93–98. DOI: 10.22603/ssrr.2021-0251.
  22. Wang X, Williams C, Liu ZH, et al. Big data management challenges in health research: A literature review. Brief Bioinform 2019;20(1):156-167. DOI: 10.1093/bib/bbx086.
  23. Ozada C. The path to revolutionary healthcare. Available at: Accessed date: 31 October 2022.
  24. Faghmous JH, Kumar V. A big data guide to understanding climate change: The case for theory-guided data science. Big Data 2014;2(3):155–163. DOI: 10.1089/big.2014.0026.
  25. Jordan S, Fontaine C, Hendricks–Sturrup R. Selecting privacy-enhancing technologies for managing health data use. Front Public Health 2022;10:814163. DOI: 10.3389/fpubh.2022.814163. DOI: 10.3389/fpubh.2022.814163.
  26. Silva LM, Felgueiras CS, Alexandre LA, Marques de Sa J. Error entropy in classification problems: A univariate data analysis. Neural Comput 2006;18(9):2036–2061. DOI: 10.1162/neco.2006.18.9.2036.
  27. Mandava P, Krumpelman CS, Shah JN, et al. Quantification of errors in ordinal outcome scales using shannon entropy: Effect on sample size calculations. PLoS One 2013;8(7):e67754. DOI: 10.1371/journal.pone.0067754.
  28. Mackay MA, Badrick TC. Steady state errors and risk of a QC strategy. Clin Biochem 2019;64:37–43. DOI: 10.1016/j.clinbiochem.2018.12.005.
  29. Ruggeri M, Coretti S. Do probability and certainty equivalent techniques lead to inconsistent results? Evidence from gambles involving life-years and quality of life. Value Health 2015;18(4): 413–424. DOI: 10.1016/j.jval.2014.12.019.
  30. Pouget A, Drugowitsch J, Kepecs A. Confidence and certainty: Distinct probabilistic quantities for different goals. Nat Neurosci 2016;19(3):366–374. DOI: 10.1038/nn.4240.
  31. Evans RS. Electronic health records: Then, now, and in the future. Yearb Med Inform 2016;Suppl. 1:S48–S61. DOI: 10.15265/IYS-2016-s006.
  32. Keerthy S, Nagesh NK. Efficacious continuous monitoring of infants using wireless remote monitoring technology. Indian J Pediatr 2022;89(8):771–775. DOI: 10.1007/s12098-021-04035-6.
  33. Safavi KC, Driscoll W, Wiener–Kronish JP. Remote surveillance technologies: Realizing the aim of right patient, right data, right time. Anesth Analg 2019;129(3):726–734. DOI: 10.1213/ANE. 0000000000003948.
  34. Riplinger L, Piera–Jimenez J, Dooling JP. Patient identification techniques: Approaches, implications, and findings. Yearb Med Inform 2020;29(1):81–86. DOI: 10.1055/s-0040-1701984.
  35. Modi N, Ashby D, Battersby C, et al. Developing routinely recorded clinical data from electronic patient records as a national resource to improve neonatal health care: The medicines for neonates research programme. Southampton (UK): NIHR Journals Library; 2019. Programme Grants for Applied Research. DOI: 10.3310/pgfar07060.
  36. Jalali MS, Kaiser JP. Cybersecurity in hospitals: A systematic, organizational perspective. J Med Internet Res 2018;20(5):e10059. DOI: 10.2196/10059.
  37. Chung K, Chung D, Joo Y. Overview of administrative simplification provisions of HIPAA. J Med Syst 2006;30(1):51–55. DOI: 10.1007/s10916-006-7404-1.
  38. Banks DL. The health Insurance portability and accountability act: Does it live up to the promise? J Med Syst 2006;30(1):45–50. DOI: 10.1007/s10916-006-7403-2.
  39. Feld AD. The Health Insurance Portability and Accountability Act (HIPAA): Its broad effect on practice. Am J Gastroenterol 2005;100(7):1440–1443. DOI: 10.1111/j.1572-0241.2005.50621.x.
  40. HIPAA Journal. Available at:
  41. HIPAA Journal. Healthcare data breach statistics. Available at: Accessed date: 31 October 2022.
  42. Collier R. NHS ransomware attack spreads worldwide. CMAJ 2017;189(22):E786–E787. DOI: 10.1503/cmaj.1095434.
  43. Seh AH, Zarour M, Alenezi M, et al. Healthcare data breaches: Insights and implications. Healthcare (Basel) 2020;8(2):133. DOI: 10.3390/healthcare8020133.
  44. National Guideline Alliance (UK). NICE Guideline No. 204. Consent, privacy and confidentiality: Babies, children and young people's experience of healthcare – Evidence review. London: National Institute for Health and Care Excellence (NICE), 2021. Available at:
  45. Hilton RP, Zheng Y, Serban N. Modeling heterogeneity in healthcare utilization using massive medical claims data. J Am Stat Assoc 2018;113(521):111–121. DOI: 10.1080/01621459.2017.1330203.
  46. Belsky J, Crnic K, Woodworth S. Personality and parenting: exploring the mediating role of transient mood and daily hassles. J Pers 1995;63(4):905–929. DOI: 10.1111/j.1467-6494.1995.tb00320.x.
  47. McHaffie HE, Laing IA, Parker M, et al. Deciding for imperilled newborns: Medical authority or parental autonomy? J Med Ethics 2001;27(2):104–109. DOI: 10.1136/jme.27.2.104.
  48. Manning D. Proxy consent in neonatal care: Goal-directed or procedure-specific? Health Care Anal 2005;13(1):1–9. DOI: 10.1007/s10728-005-2566-4.
  49. Obeidat HM, Bond EA, Callister LC. The parental experience of having an infant in the newborn intensive care unit. J Perinat Educ Summer 2009;18(3):23–29. DOI: 10.1624/105812409X461199.
  50. West SM. Cryptography as information control. Soc Stud Sci 2022;52(3):353–375. DOI: 10.1177/03063127221078314.
  51. Jiang H, Li X, Xu Q. An Improvement to a multi-client searchable encryption scheme for Boolean queries. J Med Syst 2016;40(12):255. DOI: 10.1007/s10916-016-0610-6.
  52. Quantin C, Bouzelat H, Dusserre L. Irreversible encryption method by generation of polynomials. Med Inform (Lond) 1996;21(2):113–21. DOI: 10.3109/14639239608995013.
  53. Thilakanathan D, Calvo RA, Chen S, et al. Facilitating secure sharing of personal health data in the cloud. JMIR Med Inform 2016;4(2):e15. DOI: 10.2196/medinform.4756.
  54. Kon WY, Lim CCW. Provably secure symmetric private information retrieval with quantum cryptography. Entropy (Basel) 2020;23(1):54. DOI: 10.3390/e23010054.
  55. Kambourakis G, Maglogiannis I, Rouskas A. PKI-based secure mobile access to electronic health services and data. Technol Health Care 2005;13(6):511–526. PMID: 16340094.
  56. Naresh VS, Nasralla MM, Reddi S, et al. Quantum Diffie–Hellman extended to dynamic quantum group key agreement for e-healthcare multi-agent systems in smart cities. Sensors (Basel) 2020;20(14): 3940. DOI: 10.3390/s20143940.
  57. Sheng Y, Xin Z, Alam MS, et al. Information hiding based on double random-phase encoding and public–key cryptography. Opt Express 2009;17(5):3270-84. DOI: 10.1364/oe.17.003270.
  58. Zhang L, Tang S, Luo H. Elliptic curve cryptography-based authentication with identity protection for smart grids. PLoS One 2016;11(3):e0151253. DOI: 10.1371/journal.pone.0151253.
  59. Bhowmik A, Menon U. An adaptive cryptosystem on a finite field. Peer J Comput Sci 2021;7:e637. DOI: 10.7717/peerj-cs.637.
  60. Calkavur S. Public–Key cryptosystems and bounded distance decoding of linear codes. Entropy (Basel) 2022;24(4):498. DOI: 10.3390/e24040498.
  61. Nechvatal J, Barker E, Bassham L, et al. Report on the development of the advanced encryption standard (AES). J Res Natl Inst Stand Technol 2001;106(3):511–577. DOI: 10.6028/jres.106.023.
  62. Radwan AG, AbdElHaleem SH, Abd-El-Hafiz SK. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. J Adv Res 2016;7(2):193–208. DOI: 10.1016/j.jare.2015.07.002.
  63. Dworak K, Boryczka U. Breaking data encryption standard with a reduced number of rounds using metaheuristics differential cryptanalysis. Entropy (Basel) 2021;23(12):1697. DOI: 10.3390/e23121697.
  64. Shin SH, Yoo WS, Choi H. Development of modified RSA algorithm using fixed Mersenne prime numbers for medical ultrasound imaging instrumentation. Comput Assist Surg (Abingdon) 2019;24(Suppl. 2):73–78. DOI: 10.1080/24699322.2019.1649070.
  65. Giri D, Maitra T, Amin R, et al. An efficient and robust RSA-based remote user authentication for telecare medical information systems. J Med Syst 2015;39(1):145. DOI: 10.1007/s10916-014-0145-7.
  66. Hayat U, Ullah I, Azam NA, et al. A novel image encryption scheme based on elliptic curves over finite rings. Entropy (Basel) 2022;24(5):571. DOI: 10.3390/e24050571.
  67. Burg D, Ausubel JH. Moore's law revisited through Intel chip density. PLoS One 2021;16(8):e0256245. DOI: 10.1371/journal.pone.0256245.
  68. Lim MH, Teoh AB, Toh KA. Dynamic detection-rate-based bit allocation with genuine interval concealment for binary biometric representation. IEEE Trans Cybern 2013;43(3):843–857. DOI: 10.1109/TSMCB.2012.2217127.
  69. Bordg A, Lachnitt H, He Y. Certified quantum computation in Isabelle/HOL. J Autom Reason 2021;65(5):691–709. DOI: 10.1007/s10817-020-09584-7.
  70. Kendon V. Quantum computing using continuous-time evolution. Interface Focus 2020;10(6):20190143. DOI: 10.1098/rsfs.2019. 0143.
  71. Chen Y, Neill C, Roushan P, et al. Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett 2014;113(22):220502. DOI: 10.1103/PhysRevLett.113.220502.
  72. Kranz L, Gorman SK, Thorgrimsson B, et al. The use of exchange coupled atom qubits as atomic-scale magnetic field sensors. Adv Mater 2022:e2201625. DOI: 10.1002/adma.202201625.
  73. Chinnamsetty SR, Espig M, Khoromskij BN, et al. Tensor product approximation with optimal rank in quantum chemistry. J Chem Phys 2007;127(8):084110. DOI: 10.1063/1.2761871.
  74. Huang R, Tan X, Xu Q. Learning to learn variational quantum algorithm. IEEE Trans Neural Netw Learn Syst 2022; PP. DOI: 10.1109/TNNLS.2022.3151127.
  75. Fickler R, Krenn M, Lapkiewicz R, et al. Real-time imaging of quantum entanglement. Sci Rep 2013;3:1914. DOI: 10.1038/srep01914.
  76. Paneru D, Cohen E, Fickler R, et al. Entanglement: Quantum or classical? Rep Prog Phys 2020;83(6):064001. DOI: 10.1088/1361-6633/ab85b9.
  77. Leggett AJ. The quantum measurement problem. Science 2005;307(5711):871–872. DOI: 10.1126/science.1109541.
  78. Lazarovici D, Hubert M. How quantum mechanics can consistently describe the use of itself. Sci Rep 2019;9(1):470. DOI: 10.1038/s41598-018-37535-1.
  79. Daffertshofer A, Plastino AR, Plastino A. Classical no-cloning theorem. Phys Rev Lett 2002;88(21):210601. DOI: 10.1103/PhysRevLett.88.210601.
  80. Bauer B, Bravyi S, Motta M, et al. Quantum algorithms for quantum chemistry and quantum materials science. Chem Rev 2020;120(22):12685–12717. DOI: 10.1021/acs.chemrev.9b00829.
  81. Ahnefeld F, Theurer T, Egloff D, et al. Coherence as a resource for Shor's algorithm. Phys Rev Lett 2022;129(12):120501. DOI: 10.1103/PhysRevLett.129.120501.
  82. Gebhart V, Pezze L, Smerzi A. Quantifying computational advantage of Grover's algorithm with the trace speed. Sci Rep 2021;11(1):1288. DOI: 10.1038/s41598-020-80153-z.
  83. Godfrin C, Ferhat A, Ballou R, et al. Operating quantum states in single magnetic molecules: Implementation of Grover's quantum algorithm. Phys Rev Lett 2017;119(18):187702. DOI: 10.1103/PhysRevLett.119.187702.
  84. Scully MO, Zubairy MS. Quantum optical implementation of Grover's algorithm. Proc Natl Acad Sci U S A 2001;98(17):9490–9493. DOI: 10.1073/pnas.171317798.
  85. Wright K, Beck KM, Debnath S, et al. Benchmarking an 11-qubit quantum computer. Nat Commun 2019;10(1):5464–5472. DOI: 10.1038/s41467-019-13534-2.
  86. Chen A. Implementation of Deutsch–Jozsa algorithm and determination of value of function via Rydberg blockade. Opt Express 2011;19(3):2037–2045. DOI: 10.1364/OE.19.002037.
  87. Ampatzis M, Andronikos T. QKD based on symmetric entangled Bernstein–Vazirani. Entropy (Basel) 2021;23(7):870. DOI: 10.3390/e23070870.
  88. Dixit V, Jian S. Quantum Fourier transform to estimate drive cycles. Sci Rep 2022;12(1):654. DOI: 10.1038/s41598-021-04639-0.
  89. Kang C, Bauman NP, Krishnamoorthy S, et al. Optimized quantum phase estimation for simulating electronic states in various energy regimes. J Chem Theory Comput 2022;18(11):6567–6576. DOI: 10.1021/acs.jctc.2c00577.
  90. Chakraborty S, Novo L, Ambainis A, et al. Spatial search by quantum walk is optimal for almost all graphs. Phys Rev Lett 2016;116(10):100501. DOI: 10.1103/PhysRevLett.116.100501.
  91. Wang Y, Hu ML. Quantum teleportation and dense coding in multiple bosonic reservoirs. Entropy (Basel) 2022;24(8):1114. DOI: 10.3390/e24081114.
  92. Yang YH, Li PY, Ma SZ, et al. All optical metropolitan quantum key distribution network with post-quantum cryptography authentication. Opt Express 2021;29(16):25859–25867. DOI: 10.1364/OE.432944.
  93. Anusuya Devi V, Kalaivani V. Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications. Pers Ubiquitous Comput 2021:1–11. DOI: 10.1007/s00779-021-01546-z.
  94. Fujiwara M, Yoshino K, Nambu Y, et al. Modified E91 protocol demonstration with hybrid entanglement photon source. Opt Express 2014;22(11):13616–13624. DOI: 10.1364/OE.22.013616.
  95. Neeley M, Bialczak RC, Lenander M, et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 2010;467(7315):570–573. DOI: 10.1038/nature09418.
  96. Skosana U, Tame M. Demonstration of Shor's factoring algorithm for N [Formula: see text] 21 on IBM quantum processors. Sci Rep 2021;11(1):16599. DOI: 10.1038/s41598-021-95973-w.
  97. Ducas L, Kiltz E, Lepoint T, et al. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Trans Cryptogr Hardw Embed Syst 2018;2018(1):238–268. DOI: 10.13154/tches.v2018.i1.238-268.
  98. Lizama–Perez LA, Lopez RJ. Non-invertible public key certificates. Entropy (Basel) 2021;23(2). DOI: 10.3390/e23020226.
  99. Septien–Hernandez JA, Arellano–Vazquez M, Contreras–Cruz MA, et al. A comparative study of post-quantum cryptosystems for Internet-of-things applications. Sensors (Basel) 2022;22(2):489. DOI: 10.3390/s22020489.
  100. Ortiz JN, de Araujo RR, Aranha DF, et al. The ring-LWE problem in lattice-based cryptography: The case of twisted embeddings. Entropy (Basel) 2021;23(9):1108. DOI: 10.3390/e23091108.
  101. Dai S. Quantum cryptanalysis on a multivariate cryptosystem based on clipped Hopfield neural network. IEEE Trans Neural Netw Learn Syst 2022;33(9):5080–5084. DOI: 10.1109/TNNLS.2021.3059434.
  102. Ren L, Zhang D. A QR code-based user-friendly visual cryptography scheme. Sci Rep 2022;12(1):7667. DOI: 10.1038/s41598-022-11871-9.
  103. Rani R, Kumar S, Kaiwartya O, et al. Towards green computing oriented security: A lightweight postquantum signature for IoE. Sensors (Basel) 2021;21(5). DOI: 10.3390/s21051883.
  104. McGoldrick LK, Weiss EA, Halamek J. Symmetric-key encryption based on bioaffinity interactions. ACS Synth Biol 2019;8(7): 1655–1662. DOI: 10.1021/acssynbio.9b00164.
  105. Campagna M. Preparing today for a post-quantum cryptographic future. Available at: 2022. Accessed date: 31 October 2022.
  106. Gambetta JM, Chow JM, Steffen M. Building logical qubits in a superconducting quantum computing system. npj Quantum Inf 2017;3(2):7. DOI: 10.1038/s41534-016-0004-0.
  107. Landig AJ, Koski JV, Scarlino P, et al. Virtual-photon-mediated spin–qubit–transmon coupling. Nat Commun 2019;10(1):5037. DOI: 10.1038/s41467-019-13000-z.
  108. Zhang Q, Xu F, Li L, et al. Quantum information research in China. Quantum Sci Technol 2019;4(4). DOI: 10.1088/2058-9565/ab4bea.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.