Register      Login

VOLUME 1 , ISSUE 3 ( July-September, 2022 ) > List of Articles


Advancement of Enteral Feeding in Very-low-birth-weight Infants: Global Issues and Challenges

Krystle Perez, Gregory Charles Valentine, Sushma Nangia, Douglas G Burrin, Mahlet Abayneh, Redeat Workneh, Maggie Jerome, N Alejandro Dinerstein, Ariel Salas

Keywords : Enteral nutrition, Necrotizing enterocolitis, Prematurity

Citation Information : Perez K, Valentine GC, Nangia S, Burrin DG, Abayneh M, Workneh R, Jerome M, Dinerstein NA, Salas A. Advancement of Enteral Feeding in Very-low-birth-weight Infants: Global Issues and Challenges. 2022; 1 (3):306-313.

DOI: 10.5005/jp-journals-11002-0038

License: CC BY-NC 4.0

Published Online: 07-10-2022

Copyright Statement:  Copyright © 2022; The Author(s).


In very-low-birth-weight (VLBW) infants, the initiation of enteral feedings is frequently delayed and the feeding volumes are advanced very slowly. Clinicians often express concerns about gut immaturity and consequent increased risk of feeding intolerance, spontaneous intestinal perforation (SIP), and necrotizing enterocolitis (NEC). Late initiation and ultracautious advancement of enteral feedings are seen all over the world, despite known associations with a prolonged need for central venous access and increased risk of sepsis, which is one of the leading causes of neonatal mortality. Promoting early establishment of full enteral feeding, particularly when maternal or donor milk is available, can improve neonatal outcomes, particularly the incidence of central-line-associated bacterial infections, the length of hospital stay, and survival. This review highlights current evidence for maximizing enteral feeding strategies for VLBW infants in various settings. Specifically, we will outline the physiologic evidence for early and continued enteral feedings in VLBW infants, discuss considerations for the initiation and advancement of enteral feedings, and highlight future areas of research focused on these issues. Consideration for the evidence from low- as well as high-resource settings is critical to inform optimal feeding strategies of VLBW infants globally.

PDF Share
  1. Hermansen MC, Hermansen MG. Intravascular catheter complications in the neonatal intensive care unit. Clin Perinatol 2005;32(1):141–156. DOI: 10.1016/j.clp.2004.11.005.
  2. Colacchio K, Deng Y, Northrup V, et al. Complications associated with central and non-central venous catheters in a neonatal intensive care unit. J Perinatol 2012;32(12):941–946. DOI: 10.1038/jp.2012.7.
  3. McKeown RE, Marsh TD, Amarnath U, et al. Role of delayed feeding and of feeding increments in necrotizing enterocolitis. J Pediatr 1992;121(5 Pt 1):764–770. DOI: 10.1016/s0022-3476(05)81913-4.
  4. Abiramalatha T, Thomas N, Thanigainathan S. High versus standard volume enteral feeds to promote growth in preterm or low birth weight infants. Cochrane Database Syst Rev 2021;3(3):CD012413. DOI: 10.1002/14651858.CD012413.pub3.
  5. Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2015;(10):CD001241. DOI: 10.1002/14651858.CD001241.pub6.
  6. Oddie SJ, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2021;8(8):CD001241. DOI: 10.1002/14651858.CD001241.pub8.
  7. Walsh V, Brown JVE, Copperthwaite BR, et al. Early full enteral feeding for preterm or low birth weight infants. Cochrane Database Syst Rev 2020;12(12):CD013542. DOI: 10.1002/14651858.CD013542.pub2.
  8. Young L, Oddie SJ, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2022;1:CD001970. DOI: 10.1002/14651858.CD001970.pub6.
  9. Quigley M, Embleton ND, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 2019;7(7):CD002971. DOI: 10.1002/14651858.CD002971.pub5.
  10. Condino AA, Barleycorn AA, Lu W, et al. Abnormal intestinal histology in neonates with congenital anomalies of the gastrointestinal tract. Biol Neonate 2004;85(3):145–150. DOI: 10.1159/000075064.
  11. Herbst JJ, Sunshine P. Postnatal development of the small intestine of the rat. Changes in mucosal morphology at weaning. Pediatr Res 1969;3(1):27–33. DOI: 10.1203/00006450-196901000-00004.
  12. Trahair JF. Remodeling of the rat small intestinal mucosa during the suckling period. J Pediatr Gastroenterol Nutr 1989;9(2):232–237. DOI: 10.1097/00005176-198908000-00017.
  13. Trahair JF, Harding R. Restitution of swallowing in the fetal sheep restores intestinal growth after midgestation esophageal obstruction. J Pediatr Gastroenterol Nutr 1995;20(2):156–161. DOI: 10.1097/000 05176-199502000-00004.
  14. Levy E, Delvin E, Menard D, et al. Functional development of human fetal gastrointestinal tract. Methods Mol Biol 2009;550:205–224. DOI: 10.1007/978-1-60327-009-0_13.
  15. Menard D. Functional development of the human gastrointestinal tract: Hormone- and growth factor-mediated regulatory mechanisms. Can J Gastroenterol 2004;18(1):39–44. DOI: 10.1155/2004/640897.
  16. Atkinson SA, Bryan MH, Anderson GH. Human milk feeding in premature infants: Protein, fat, and carbohydrate balances in the first two weeks of life. J Pediatr 1981;99(4):617–624. DOI: 10.1016/s0022-3476(81)80275-2.
  17. Schanler RJ, Rifka M. Calcium, phosphorus and magnesium needs for the low-birth-weight infant. Acta Paediatr Suppl 1994;405:111–116. DOI: 10.1111/j.1651-2227.1994.tb13408.x.
  18. Antonowicz I, Chang SK, Grand RJ. Development and distribution of lysosomal enzymes and disaccharidases in human fetal intestine. Gastroenterology 1974;67(1):51–58. PMID: 485813.7.
  19. Zoppi G, Andreotti G, Pajno-Ferrara F, et al. Exocrine pancreas function in premature and full term neonates. Pediatr Res 1972;6(12):880–886. DOI: 10.1203/00006450-197212000-00005.
  20. Lucas A, Bloom SR, Aynsley-Green A. Development of gut hormone responses to feeding in neonates. Arch Dis Child 1980;55(9):678–682. DOI: 10.1136/adc.55.9.678.
  21. Berseth CL, Nordyke CK, Valdes MG, et al. Responses of gastrointestinal peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr Res 1992;31(6):587–590. DOI: 10.1203/00006450-199206000-00010.
  22. Hyman PE, Clarke DD, Everett SL, et al. Gastric acid secretory function in preterm infants. J Pediatr 1985;106(3):467–471. DOI: 10.1016/s0022-3476(85)80682-x.
  23. Szabo JS, Mayfield SR, Oh W, et al. Postprandial gastrointestinal blood flow and oxygen consumption: Effects of hypoxemia in neonatal piglets. Pediatr Res 1987;21(1):93–98. DOI: 10.1203/00006450-19870 1000-00020.
  24. Yanowitz TD, Yao AC, Pettigrew KD, et al. Postnatal hemodynamic changes in very-low-birthweight infants. J Appl Physiol 1999; 87(1):370–380. DOI: 10.1152/jappl.1999.87.1.370.
  25. Krimmel GA, Baker R, Yanowitz TD. Blood transfusion alters the superior mesenteric artery blood flow velocity response to feeding in premature infants. Am J Perinatol 2009;26(2):99–105. DOI: 10.1055/s-0028-1090595.
  26. Lau C, Smith EO, Schanler RJ. Coordination of suck-swallow and swallow respiration in preterm infants. Acta Paediatr 2003;92(6): 721–727. PMID: 12856985.
  27. Berseth CL. Neonatal small intestinal motility: Motor responses to feeding in term and preterm infants. J Pediatr 1990;117(5):777–782. DOI: 10.1016/s0022-3476(05)83343-8.
  28. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: Development of the enteric nervous system. J Neurobiol 1993; 24(2):199–214. DOI: 10.1002/neu.480240207.
  29. Gupta M, Brans YW. Gastric retention in neonates. Pediatrics 1978;62(1):26–29. PMID: 683779.
  30. Cavell B. Gastric emptying in infants fed human milk or infant formula. Acta Paediatr Scand 1981;70(5):639–641. PMID: 7324911.
  31. Neu J. Gastrointestinal development and meeting the nutritional needs of premature infants. Am J Clin Nutr 2007;85(2):629S–634S. DOI: 10.1093/ajcn/85.2.629S.
  32. Alpers DH. Enteral feeding and gut atrophy. Curr Opin Clin Nutr Metab Care 2002;5(6):679–683. DOI: 10.1097/01.mco.0000038812.16540.72.
  33. Ziegler EE, Thureen PJ, Carlson SJ. Aggressive nutrition of the very low birthweight infant. Clin Perinatol 2002;29(2):225–244. DOI: 10.1016/s0095-5108(02)00007-6.
  34. Neu J, Douglas-Escobar M, Lopez M. Microbes and the developing gastrointestinal tract. Nutr Clin Pract 2007;22(2):174–182. DOI: 10.1177/0115426507022002174.
  35. Niinikoski H, Stoll B, Guan X, et al. Onset of small intestinal atrophy is associated with reduced intestinal blood flow in TPN-fed neonatal piglets. J Nutr 2004;134(6):1467–1474. DOI: 10.1093/jn/134.6.1467.
  36. Kansagra K, Stoll B, Rognerud C, et al. Total parenteral nutrition adversely affects gut barrier function in neonatal piglets. Am J Physiol Gastrointest Liver Physiol 2003;285(6):G1162–G1170. DOI: 10.1152/ajpgi.00243.2003.
  37. Burrin DG, Stoll B, Jiang R, et al. Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: How much is enough? Am J Clin Nutr 2000;71(6):1603–1610. DOI: 10.1093/ajcn/71.6.1603.
  38. Levine GM, Deren JJ, Steiger E, et al. Role of oral intake in maintenance of gut mass and disaccharide activity. Gastroenterology 1974;67(5):975–982. PMID: 4214726.
  39. Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg 2002;183(4):390–398. DOI: 10.1016/s0002-9610 (02)00821-8.
  40. Conour JE, Ganessunker D, Tappenden KA, et al. Acidomucin goblet cell expansion induced by parenteral nutrition in the small intestine of piglets. Am J Physiol Gastrointest Liver Physiol 2002;283(5):G1185–G1196. DOI: 10.1152/ajpgi.00097.2002.
  41. Ganessunker D, Gaskins HR, Zuckermann FA, et al. Total parenteral nutrition alters molecular and cellular indices of intestinal inflammation in neonatal piglets. JPEN J Parenter Enteral Nutr 1999;23(6):337–344. DOI: 10.1177/0148607199023006337.
  42. Kiristioglu I, Antony P, Fan Y, et al. Total parenteral nutrition-associated changes in mouse intestinal intraepithelial lymphocytes. Dig Dis Sci 2002;47(5):1147–1157. DOI: 10.1023/a:1015066813675.
  43. Yang H, Finaly R, Teitelbaum DH. Alteration in epithelial permeability and ion transport in a mouse model of total parenteral nutrition. Crit Care Med 2003;31(4):1118–1125. DOI: 10.1097/01.CCM.00000 53523.73064.8A.
  44. Siggers J, Sangild PT, Jensen TK, et al. Transition from parenteral to enteral nutrition induces immediate diet-dependent gut histological and immunological responses in preterm neonates. Am J Physiol Gastrointest Liver Physiol 2011;301(3):G435–G445. DOI: 10.1152/ajpgi. 00400.2010.
  45. Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol 1995;3(4):149–154. DOI: 10.1016/s0966-842x(00)88906-4.
  46. Shin ED, Estall JL, Izzo A, et al. Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice. Gastroenterology 2005;128(5):1340–1353. DOI: 10.1053/j.gastro. 2005.02.033.
  47. Patel EU, Wilson DA, Brennan EA, et al. Earlier re-initiation of enteral feeding after necrotizing enterocolitis decreases recurrence or stricture: A systematic review and meta-analysis. J Perinatol 2020; 40(11):1679–1687. DOI: 10.1038/s41372-020-0722-1.
  48. Bjornvad CR, Schmidt M, Petersen YM, et al. Preterm birth makes the immature intestine sensitive to feeding-induced intestinal atrophy. Am J Physiol - Regul, Integr Comp Physiol 2005;289(4):R1212–R1222. DOI: 10.1152/ajpregu.00776.2004.
  49. Burrin DG, Shulman RJ, Reeds PJ, et al. Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. J Nutr 1992;122(6):1205–1213. DOI: 10.1093/jn/122.6.1205.
  50. Sangild PT, Petersen YM, Schmidt M, et al. Preterm birth affects the intestinal response to parenteral and enteral nutrition in newborn pigs. J Nutr 2002;132(9):2673–2681. DOI: 10.1093/jn/132.9.2673.
  51. Schmidt M, Sangild PT, Blum JW, et al. Combined ACTH and glucocorticoid treatment improves survival and organ maturation in premature newborn calves. Theriogenology 2004;61(9):1729–1744. DOI: 10.1016/j.theriogenology.2003.10.002.
  52. Siggers RH, Siggers J, Thymann T, et al. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J Nutr Biochem 2011;22(6):511–521. DOI: 10.1016/j.jnutbio.2010.08.002.
  53. Bombell S, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2008;(2):CD001970. DOI: 10.1002/14651858.CD001970.pub2.
  54. Thompson AM, Bizzarro MJ. Necrotizing enterocolitis in newborns: Pathogenesis, prevention and management. Drugs 2008;68(9): 1227–1238. DOI: 10.2165/00003495-200868090-00004.
  55. Hay WW, Jr. Strategies for feeding the preterm infant. Neonatology 2008;94(4):245–254. DOI: 10.1159/000151643.
  56. Tyson JE, Kennedy KA, Lucke JF, et al. Dilemmas initiating enteral feedings in high risk infants: How can they be resolved? Semin Perinatol 2007;31(2):61–73. DOI: 10.1053/j.semperi.2007.02.008.
  57. Shen RL, Thymann T, Ostergaard MV, et al. Early gradual feeding with bovine colostrum improves gut function and NEC resistance relative to infant formula in preterm pigs. Am J Physiol Gastrointest Liver Physiol 2015;309(5):G310–G323. DOI: 10.1152/ajpgi.00163.2015.
  58. Karagianni P, Briana DD, Mitsiakos G, et al. Early versus delayed minimal enteral feeding and risk for necrotizing enterocolitis in preterm growth-restricted infants with abnormal antenatal Doppler results. Am J Perinatol 2010;27(5):367–373. DOI: 10.1055/s-0029-1243310.
  59. Kennedy KA, Tyson JE, Chamnanvanikij S. Early versus delayed initiation of progressive enteral feedings for parenterally fed low birth weight or preterm infants. Cochrane Database Syst Rev 2000;(2):CD001970. DOI: 10.1002/14651858.CD001970.
  60. LaGamma EF, Ostertag SG, Birenbaum H. Failure of delayed oral feedings to prevent necrotizing enterocolitis. Results of study in very-low-birth-weight neonates. Am J Dis Child 1985;139(4):385–389. DOI: 10.1001/archpedi.1985.02140060067031.
  61. Leaf A, Dorling J, Kempley S, et al. Early or delayed enteral feeding for preterm growth-restricted infants: A randomized trial. Pediatrics 2012;129(5):e1260–e1268. DOI: 10.1542/peds.2011- 2379.
  62. Morgan J, Young L, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2011;(5):CD001970. DOI: 10.1002/14651858.CD001970.pub4.
  63. van Elburg RM, van den Berg A, Bunkers CM, et al. Minimal enteral feeding, fetal blood flow pulsatility, and postnatal intestinal permeability in preterm infants with intrauterine growth retardation. Arch Dis Child Fetal Neonatal Ed 2004;89(4):F293–F296. DOI: 10.1136/adc.2003.027367.
  64. Lucas A, Bloom SR, Aynsley-Green A. Gut hormones and ‘minimal enteral feeding’. Acta Paediatr Scand 1986;75(5):719–723. DOI: 10.1111/j.1651-2227.1986.tb10280.x.
  65. Salas AA, Willis KA, Carlo WA, et al. The gut microbiome of extremely preterm infants randomized to the early progression of enteral feeding. Pediatr Res 2021. DOI: 10.1038/s41390-021-01831-w.
  66. Dahlgren AF, Pan A, Lam V, et al. Longitudinal changes in the gut microbiome of infants on total parenteral nutrition. Pediatr Res 2019;86(1):107–114. DOI: 10.1038/s41390-019-0391-y.
  67. Wang Z, Neupane A, Vo R, et al. Comparing gut microbiome in mothers’ own breast milk- and formula-fed moderate-late preterm infants. Front Microbiol 2020;11:891. DOI: 10.3389/fmicb.2020.00891.
  68. Bastian L, Weimann A. [Practical aspects of early enteral feeding]. Anaesthesiol Reanim 1999;24(4):95–100. PMID: 10528415.
  69. Thureen PJ, Hay WW, Jr. Early aggressive nutrition in preterm infants. Semin Neonatol 2001;6(5):403–415. DOI: 10.1053/siny.2001.0061.
  70. Harkness L. The history of enteral nutrition therapy: From raw eggs and nasal tubes to purified amino acids and early postoperative jejunal delivery. J Am Diet Assoc 2002;102(3):399–404. DOI: 10.1016/s0002-8223(02)90092-1.
  71. Fanaro S. Which is the ideal target for preterm growth? Minerva Pediatr 2010;62(3 Suppl 1):77–82. PMID: 21089724.
  72. Fanaro S. Strategies to improve feeding tolerance in preterm infants. J Matern Fetal Neonatal Med 2012;25(Suppl 4):54–56. DOI:10.3109/14767058.2012.715021.
  73. Fanaro S. Feeding intolerance in the preterm infant. Early Hum Dev 2013;89(Suppl 2):S13–S20. DOI: 10.1016/j.earlhumdev.2013.07.013.
  74. Ghoneim N, Bauchart-Thevret C, Oosterloo B, et al. Delayed initiation but not gradual advancement of enteral formula feeding reduces the incidence of necrotizing enterocolitis (NEC) in preterm pigs. PLoS One 2014;9(9):e106888. DOI: 10.1371/journal.pone.0106888.
  75. Salas AA, Li P, Parks K, et al. Early progressive feeding in extremely preterm infants: A randomized trial. Am J Clin Nutr 2018;107(3): 365–370. DOI: 10.1093/ajcn/nqy012.
  76. Dorling J, Kempley S, Leaf A. Feeding growth restricted preterm infants with abnormal antenatal Doppler results. Arch Dis Child Fetal Neonatal Ed 2005;90(5):F359–F363. DOI: 10.1136/adc.2004.060350.
  77. Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2011;(3):CD001241. DOI: 10.1002/14651858.CD001241.pub3.
  78. Rayyis SF, Ambalavanan N, Wright L, et al. Randomized trial of “slow” versus “fast” feed advancements on the incidence of necrotizing enterocolitis in very low birth weight infants. J Pediatr 1999;134(3):293–297.
  79. Salhotra A, Ramji S. Slow versus fast enteral feed advancement in very low birth weight infants: A randomized control trial. Indian Pediatr 2004;41(5):435–441. PMID: 15181294.
  80. Caple J, Armentrout D, Huseby V, et al. Randomized, controlled trial of slow versus rapid feeding volume advancement in preterm infants. Pediatrics 2004;114(6):1597–1600. DOI:10.1542/peds.2004-1232.
  81. Krishnamurthy S, Gupta P, Debnath S, et al. Slow versus rapid enteral feeding advancement in preterm newborn infants 1000-1499 g: A randomized controlled trial. Acta Paediatr 2010;99(1):42–46. DOI: 10.1111/j.1651-2227.2009.01519.x.
  82. Dorling J, Abbott J, Berrington J, et al. Controlled trial of two incremental milk-feeding rates in preterm infants. N Engl J Med 2019;381(15):1434–1443. DOI: 10.1056/NEJMoa1816654.
  83. Leaf A, Dorling J, Kempley S, et al. Early or delayed enteral feeding for preterm growth-restricted infants: a randomized trial. Pediatrics 2012;129(5):e1260–e1268. DOI: 10.1542/peds.2011-2379.
  84. Morgan J, Young L, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 2014;2014(12):CD001970. DOI: 10.1002/14651858.CD001970.pub5.
  85. Sanghvi KP, Joshi P, Nabi F, et al. Feasibility of exclusive enteral feeds from birth in VLBW infants >1200 g--An RCT. Acta Paediatr 2013;102(7):e299–e304. DOI: 10.1111/apa.12254.
  86. Bora R, Murthy NB. In resource limited areas complete enteral feed in stable very low birth weight infants (1000-1500 g) started within 24 h of life can improve nutritional outcome. J Matern Fetal Neonatal Med 2017;30(21):2572–2577. DOI: 10.1080/14767058.2016.1256992.
  87. Nangia S, Vadivel V, Thukral A, et al. Early total enteral feeding versus conventional enteral feeding in stable very-low-birth-weight infants: A randomised controlled trial. Neonatology 2019;115(3): 256–262. DOI: 10.1159/000496015.
  88. Nangia S, Bishnoi A, Goel A, et al. Early total enteral feeding in stable very low birth weight infants: A before and after study. J Trop Pediatr 2018;64(1):24–30. DOI: 10.1093/tropej/fmx023.
  89. Goldberg DL, Becker PJ, Brigham K, et al. Identifying malnutrition in preterm and neonatal populations: Recommended indicators. J Acad Nutr Diet 2018;118(9):1571–1582. DOI: 10.1016/j.jand.2017.10.006.
  90. Salas AA, Bhatia A, Carlo WA. Postnatal growth of preterm infants 24 to 26 weeks of gestation and cognitive outcomes at 2 years of age. Pediatr Res 2021;89(7):1804–1809. DOI: 10.1038/s41390-020-01158-y.
  91. Travers CP, Wang T, Salas AA, et al. Higher- or usual-volume feedings in infants born very preterm: A randomized clinical trial. J Pediatr 2020; 224:66–71.e1. DOI: 10.1016/j.jpeds.2020.05.033.
  92. Salas AA, Travers CP, Jerome ML, et al. Percent body fat content measured by plethysmography in infants randomized to high- or usual-volume feeding after very preterm birth. J Pediatr 2021;230:251–254.e3. DOI: 10.1016/j.jpeds.2020.11.028.
  93. Stephens BE, Gargus RA, Walden RV, et al. Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J Perinatol 2008;28(2):123–128. DOI: 10.1038/
  94. Valentine GC, Perez KM, Wood TR, et al. Postnatal maximal weight loss, fluid administration, and outcomes in extremely preterm newborns. J Perinatol 2022;42(8):1008–1016. DOI: 10.1038/s41372-022- 01369-7.
  95. Oh W, Poindexter BB, Perritt R, et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr 2005;147(6):786–790. DOI: 10.1016/j.jpeds.2005. 06.039.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.