Newborn

Register      Login

VOLUME 1 , ISSUE 2 ( April-June, 2022 ) > List of Articles

REVIEW ARTICLE

Risk Prediction for Stillbirth and Neonatal Mortality in Low-resource Settings

Vivek V Shukla, Waldemar A Carlo

Keywords : Low- and middle-income countries, Mortality fetal, Mortality neonatal, Neonatal, Newborn infant, Preterm infants, Perinatal mortality, Resuscitation, Stillbirth

Citation Information : Shukla VV, Carlo WA. Risk Prediction for Stillbirth and Neonatal Mortality in Low-resource Settings. 2022; 1 (2):215-218.

DOI: 10.5005/jp-journals-11002-0034

License: CC BY-NC 4.0

Published Online: 05-07-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

High stillbirth and neonatal mortality are major public health problems, particularly in low-resource settings in low- and middle-income countries (LMIC). Despite sustained efforts by national and international organizations over the last several decades, quality intrapartum and neonatal care is not universally available, especially in these low-resource settings. A few studies identify risk factors for adverse perinatal outcomes in low-resource settings in LMICs. This review highlights the evidence of risk prediction for stillbirth and neonatal death. Evidence using advanced machine-learning statistical models built on data from low-resource settings in LMICs suggests that the predictive accuracy for intrapartum stillbirth and neonatal mortality using prenatal and pre-delivery data is low. Models with delivery and post-delivery data have good predictive accuracy of the risk for neonatal mortality. Birth weight is the most important predictor of neonatal mortality. Further validation and testing of the models in other low-resource settings and subsequent development and testing of possible interventions could advance the field.


HTML PDF Share
  1. Hug L, Alexander M, You D, et al. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob Health 2019;7(6):e710–e720. DOI: 10.1016/S2214-109X(19)30163-9.
  2. Burstein R, Henry NJ, Collison ML, et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature 2019;574(7778):353–358. DOI: 10.1038/s41586-019-1545-0.
  3. Levels and trends in child mortality. UN Inter-agency Group for Child Mortality Estimation. https://data.unicef.org/wp-content/uploads/2018/10/Child-Mortality-Report-2018.pdf.
  4. Blencowe H, Cousens S, Jassir FB, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health 2016;4(2):e98–e108. DOI: 10.1016/S2214-109X(15)00275-2.
  5. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 2015;385(9966): 430–440. DOI: 10.1016/S0140-6736(14)61698-6.
  6. Lawn JE, Cousens S, Zupan J, et al. 4 Million neonatal deaths: When? Where? Why? Lancet 2005;365(9462):891–900. DOI: 10.1016/S0140-6736(05)71048-5.
  7. Wall SN, Lee AC, Niermeyer S, et al. Neonatal resuscitation in low-resource settings: what, who, and how to overcome challenges to scale up? Int J Gynaecol Obstet 2009;107(Suppl 1):S47–S62, S63–64. DOI: 10.1016/j.ijgo.2009.07.013.
  8. Montagu D, Yamey G, Visconti A, et al. Where do poor women in developing countries give birth? A multi-country analysis of demographic and health survey data. PLoS One 2011;6(2):e17155. DOI: 10.1371/journal.pone.0017155.
  9. Darmstadt GL, Lee AC, Cousens S, et al. 60 Million non-facility births: who can deliver in community settings to reduce intrapartum-related deaths? Int J Gynaecol Obstet 2009;107(Suppl 1):S89–S112. DOI: 10.1016/j.ijgo.2009.07.010.
  10. Bhutta ZA, Das JK, Bahl R, et al. Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost? Lancet 2014;384(9940):347–370. DOI: 10.1016/S0140-6736(14)60792-3.
  11. Lawn JE, Blencowe H, Pattinson R, et al. Stillbirths: Where? When? Why? How to make the data count? Lancet 2011;377(9775):1448–1463. DOI: 10.1016/S0140-6736(10)62187-3.
  12. Kruk ME, Gage AD, Joseph NT, et al. Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. Lancet 2018;392(10160):2203–2212. DOI: 10.1016/S0140-6736(18)31668-4.
  13. Thaddeus S, Maine D. Too far to walk: maternal mortality in context. Soc Sci Med 1994;38(8):1091–1110. DOI: 10.1016/0277-9536(94)90226-7.
  14. Geleto A, Chojenta C, Musa A, et al. Barriers to access and utilization of emergency obstetric care at health facilities in sub-Saharan Africa: a systematic review of literature. Syst Rev 2018;7(1):183. DOI: 10.1186/s13643-018-0842-2.
  15. Nimbalkar AS, Shukla VV, Phatak AG, et al. Newborn care practices and health seeking behavior in urban slums and villages of Anand, Gujarat. Indian Pediatr 2013;50(4):408–410. DOI: 10.1007/s13312-013-0116-y.
  16. Enweronu-Laryea C, Dickson KE, Moxon SG, et al. Basic newborn care and neonatal resuscitation: a multi-country analysis of health system bottlenecks and potential solutions. BMC Pregnancy Childbirth 2015;15(Suppl 2):S4. DOI: 10.1186/1471-2393-15-S2-S4.
  17. Malacova E, Tippaya S, Bailey HD, et al. Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980–2015. Sci Rep 2020;10(1):5354. DOI: 10.1038/s41598-020-62210-9.
  18. Shukla VV, Eggleston B, Ambalavanan N, et al. Predictive modeling for perinatal mortality in resource-limited settings. JAMA Netw Open 2020;3(11):e2026750. DOI: 10.1001/jamanetworkopen.2020. 26750.
  19. Goudar SS, Carlo WA, McClure EM, et al. The maternal and newborn health registry study of the Global Network for Women's and Children's Health Research. Int J Gynaecol Obstet 2012;118(3):190–193. DOI: 10.1016/j.ijgo.2012.04.022.
  20. Joyce R, Webb R, Peacock JL. Associations between perinatal interventions and hospital stillbirth rates and neonatal mortality. Arch Dis Child Fetal Neonatal Ed 2004;89(1):F51–F56. DOI: 10.1136/fn.89.1.f51.
  21. Ratnasiri AWG, Lakshminrusimha S, Dieckmann RA, et al. Maternal and infant predictors of infant mortality in California, 2007–2015. PLoS One 2020;15(8):e0236877. DOI: 10.1371/journal.pone.0236877.
  22. Houweling TAJ, van Klaveren D, Das S, et al. A prediction model for neonatal mortality in low- and middle-income countries: an analysis of data from population surveillance sites in India, Nepal and Bangladesh. Int J Epidemiol 2019;48(1):186–198. DOI: 10.1093/ije/dyy194.
  23. Ambalavanan N, Carlo WA, Bobashev G, et al. Prediction of death for extremely low birth weight neonates. Pediatrics 2005;116(6): 1367–1373. DOI: 10.1542/peds.2004-2099.
  24. Ambalavanan N, Baibergenova A, Carlo WA, et al. Early prediction of poor outcome in extremely low birth weight infants by classification tree analysis. J Pediatr 2006;148(4):438–444. DOI: 10.1016/j.jpeds.2005.11.042.
  25. Ambalavanan N, Carlo WA, Tyson JE, et al. Outcome trajectories in extremely preterm infants. Pediatrics 2012;130(1):e115–e125. DOI: 10.1542/peds.2011-3693.
  26. Tyson JE, Parikh NA, Langer J, et al. Intensive care for extreme prematurity–moving beyond gestational age. N Engl J Med 2008;358(16):1672–1681. DOI: 10.1056/NEJMoa073059.
  27. Rysavy MA, Horbar JD, Bell EF, et al. Assessment of an updated neonatal research network extremely preterm birth outcome model in the Vermont Oxford Network. JAMA Pediatr 2020;174(5):e196294. DOI: 10.1001/jamapediatrics.2019.6294.
  28. Paul AK, Schaefer M. Safeguards for the use of artificial intelligence and machine learning in global health. Bull World Health Organ 2020;98(4):282–284. DOI: 10.2471/BLT.19.237099.
  29. Medvedev MM, Brotherton H, Gai A, et al. Development and validation of a simplified score to predict neonatal mortality risk among neonates weighing 2000 g or less (NMR-2000): an analysis using data from the UK and The Gambia. Lancet Child Adolesc Health 2020;4(4):299–311. DOI: 10.1016/S2352- 4642(20)30021-3.
  30. Salas AA, Carlo WA, Ambalavanan N, et al. Gestational age and birthweight for risk assessment of neurodevelopmental impairment or death in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 2016;101(6):F494–F501. DOI: 10.1136/archdischild-2015-309670.
  31. Saravanou A, Noelke C, Huntington N. Predictive modeling of infant mortality. Data Min Knowl Disc 2021;35:1785–1807. https://doi.org/10.1007/s10618-020-00728-2.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.