Role of Near-infrared Spectroscopy in the Diagnosis and Assessment of Necrotizing Enterocolitis
Amit A Mathur, Shakir Mohamed
Citation Information :
Mathur AA, Mohamed S. Role of Near-infrared Spectroscopy in the Diagnosis and Assessment of Necrotizing Enterocolitis. 2022; 1 (1):177-181.
Near-infrared spectroscopy (NIRS) is a noninvasive, bedside diagnostic tool that could assist in the early diagnosis of necrotizing enterocolitis (NEC) in preterm neonates. NIRS is a safe and effective clinical tool in the neonatal intensive care unit to detect abnormal alterations in tissue perfusion and oxygenation. In addition, NIRS could also detect the complications of NEC, such as bowel necrosis and perforation. NEC is the most common gastrointestinal complication associated with preterm birth and critically ill infants. It is observed in 6–10% of preterm neonates, weighing below 1500 g, leading to considerable morbidity, mortality, and healthcare cost burden. The mortality rate ranges from 20 to 30%, highest in NEC infants undergoing surgery. NIRS is a promising diagnostic modality that could facilitate the early diagnosis of NEC and early detection of complications alone or with the imaging modalities.
Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198(4323):1264–1267. DOI: 10.1126/science.929199.
Wolfberg AJ, du plessis AJ. Near-infrared spectroscopy in the fetus and neonate. Clin Perinatol 2006;33(3):707–728, viii. DOI: 10.1016/j.clp.2006.06.010.
van Bel F, Lemmers P, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 2008;94(4):237–244. DOI: 10.1159/000151642.
Cortez J, Gupta M, Amaram A, et al. Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates. J Matern Fetal Neonatal Med 2011;24(4):574–582. DOI: 10.3109/14767058.2010.511335.
Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 2012;115(6):1373–1383. DOI: 10.1213/ANE.0b013e31826dd6a6.
Sakudo A. Near-infrared spectroscopy for medical applications: current status and future perspectives. Clin Chim Acta; Int J Clin Chem 2016;455:181–188. DOI: 10.1016/j.cca.2016.02.009.
Currà A, Gasbarrone R, Cardillo A, et al. Near-infrared spectroscopy as a tool for in vivo analysis of human muscles. Sci Rep 2019;9(1):8623. DOI: 10.1038/s41598-019-44896-8.
Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med 2015;20(3): 164–172. DOI: 10.1016/j.siny.2015.03.008.
Ferrari M, Giannini I, Sideri G, et al. Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol 1985;191:873–882. DOI: 10.1007/978-1-4684-3291-6_88.
Jeon GW. Clinical application of near-infrared spectroscopy in neonates. Neonatal Med 2019;26(3):121–127. DOI: 10.5385/nm.2019.26.3.121.
Hackam D, Caplan M. Necrotizing enterocolitis: pathophysiology from a historical context. Semin Pediatr Surg 2018;27(1):11–18. DOI: 10.1053/j.sempedsurg.2017.11.003.
Holman RC, Stoll BJ, Curns AT, et al. Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol 2006;20(6):498–506. DOI: 10.1111/j.1365-3016. 2006.00756.x.
Fitzgibbons SC, Ching Y, Yu D, et al. Mortality of necrotizing enterocolitis expressed by birth weight categories. J Pediatr Surg 2009;44(6):1072–1075; discussion 1075–1076. DOI: 10.1016/j.jpedsurg.2009.02.013.
Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med 2011;364(3):255–264. DOI: 10.1056/NEJMra1005408.
Nowicki PT, Nankervis CA. The role of the circulation in the pathogenesis of necrotizing enterocolitis. Clin Perinatol 1994;21(2):219–234. PMID: 8070223.
Epelman M, Daneman A, Navarro OM, et al. Necrotizing enterocolitis: review of state-of-the-art imaging findings with pathologic correlation. RadioGraphics 2007;27(2):285–305. DOI: 10.1148/rg.272055098.
Buonomo C. The radiology of necrotizing enterocolitis. Radiol Clin North Am 1999;37(6):1187–1198, vii. DOI: 10.1016/s0033-8389(05)70256-6.
Moore JE. Newer monitoring techniques to determine the risk of necrotizing enterocolitis. Clin Perinatol 2013;40(1):125–134. DOI: 10.1016/j.clp.2012.12.004.
Schat TE, Schurink M, van der Laan ME, et al. Near-infrared spectroscopy to predict the course of necrotizing enterocolitis. PLoS One 2016;11(5):e0154710. DOI: 10.1371/journal.pone.0154710.
Al-Hamad S, Hackam DJ, Goldstein SD, et al. Contrast-enhanced ultrasound and near-infrared spectroscopy of the neonatal bowel: novel, bedside, noninvasive, and radiation-free imaging for early detection of necrotizing enterocolitis. Am J Perinatol 2018;35(14):1358–1365. DOI: 10.1055/s-0038-1655768.
Grometto A, Pizzo B, Strozzi MC, et al. Cerebral NIRS patterns in late preterm and very preterm infants becoming late preterm. J Matern Fetal Neonatal Med 2019;32(7):1124–1129. DOI: 10.1080/14767058.2017.1401605.
Garvey AA, Dempsey EM. Applications of near infrared spectroscopy in the neonate. Curr Opin Pediatr 2018;30(2):209–215. DOI: 10.1097/MOP.0000000000000599.
Varela JE, Cohn SM, Giannotti GD, et al. Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Surgery 2001;129(3):363–370. DOI: 10.1067/msy.2001.111695.
Petros AJ, Heys R, Tasker RC, et al. Near infrared spectroscopy can detect changes in splanchnic oxygen delivery in neonates during apnoeic episodes. Eur J Pediat 1999;158(2):173–174. DOI: 10.1007/s004310051046.
Meier SD, Eble BK, Stapleton GE, et al. Mesenteric oxyhemoglobin desaturation improves with patent ductus arteriosus ligation. J Perinatol 2006;26(9):562–564. DOI: 10.1038/sj.jp.7211559.
Dave V, Brion LP, Campbell DE, et al. Splanchnic tissue oxygenation, but not brain tissue oxygenation, increases after feeds in stable preterm neonates tolerating full bolus orogastric feeding. J Perinatol 2009;29(3):213–218. DOI: 10.1038/jp.2008.189.
Wong FY, Leung TS, Austin T, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 2008;121(3):e604–e611. DOI: 10.1542/peds.2007-1487.
Wong FY, Silas R, Hew S, et al. Cerebral oxygenation is highly sensitive to blood pressure variability in sick preterm infants. PLoS One 2012;7(8):e43165. DOI: 10.1371/journal.pone.0043165.
Kooi EMW, Verhagen EA, Elting JWJ, et al. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother 2017;17(8):801–818. DOI: 10.1080/14737175.2017.1346472.
McNeill S, Gatenby JC, McElroy S, et al. Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants. J Perinatol 2011;31(1):51–57. DOI: 10.1038/jp.2010.71.
Mintzer JP, Parvez B, Chelala M, et al. Quiescent variability of cerebral, renal, and splanchnic regional tissue oxygenation in very low birth weight neonates. J Neonatal-Perinat Med 2014;7(3):199–206. DOI: 10.3233/NPM-14814035.
Schat TE, van der Laan ME, Schurink M, et al. Abdominal near-infrared spectroscopy in preterm infants: a comparison of splanchnic oxygen saturation measurements at two abdominal locations. Early Hum Dev 2014;90(7):371–375. DOI: 10.1016/j.earlhumdev.2014.04.008.
Patel AK, Lazar DA, Burrin DG, et al. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis. Pediatr Crit Care Med 2014;15(8):735–741. DOI: 10.1097/PCC.0000000000000211.
Fortune PM, Wagstaff M, Petros AJ. Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates. Intensive Care Med 2001;27(8):1401–1407. DOI: 10.1007/s001340100994.
Zabaneh RN, Cleary JP, Lieber CA. Mesentric oxygen saturations in premature twins with and without necrotizing enterocolitis. Pediatr Crit Care Med 2011;12(6):e404–e406. DOI: 10.1097/PCC.0b013e3181fe4278.
Stapleton GE, Eble BK, Dickerson HA, et al. Mesenteric oxygen desaturation in an infant with congenital heart disease and necrotizing enterocolitis. Tex Heart Inst J 2007;34(4):442–444. PMID: 18172526.
Gay AN, Lazar DA, Stoll B, et al. Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets. J Pediatr Surg 2011;46(6):1034–1040. DOI: 10.1016/j.jpedsurg.2011.03.025.
Hanson SJ, Berens RJ, Havens PL, et al. Effect of volume resuscitation on regional perfusion in dehydrated pediatric patients as measured by two-site near-infrared spectroscopy. Pediatr Emerg Care 2009;25(3):150–153. DOI: 10.1097/PEC.0b013e31819a7f60.
Mohamed A, Shah PS. Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics 2012;129(3):529–540. DOI: 10.1542/peds.2011-2872.
Stritzke AI, Smyth J, Synnes A, et al. Transfusion-associated necrotising enterocolitis in neonates. Arch Dis Child Fetal Neonatal Ed 2013;98(1):F10–F14. DOI: 10.1136/fetalneonatal-2011-301282.
van Hoften JCR, Verhagen EA, Keating P, et al. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child Fetal Neonatal Ed 2010;95(5):F352–F358. DOI: 10.1136/adc.2009.163592.
Seidel S, Bläser A, Gebauer C, et al. Changes in regional tissue oxygenation saturation and desaturations after red blood cell transfusion in preterm infants. J Perinatol 2013;33(4):282–287. DOI: 10.1038/jp.2012.108.
Sood BG, Cortez J, McLaughlin K, et al. Near infrared spectroscopy as a biomarker for necrotising enterocolitis following red blood cell transfusion. J Infrared Spectrosc 2014;22(6):375–388. DOI: 10.1255/jnirs.1135.
Hay S, Zupancic JAF, Flannery DD, et al. Should we believe in transfusion-associated enterocolitis? Applying a GRADE to the literature. Semin Perinatol 2017;41(1):80–91. DOI: 10.1053/j.semperi.2016.09.021.
Gephart SM. Transfusion-associated necrotizing enterocolitis: evidence and uncertainty. Adv Neonatal Care 2012;12(4):232–236. DOI: 10.1097/ANC.0b013e31825e20ee.
Lawrence SM, Nandyal R, Hallford G, et al. Changes in hematocrit following a blood transfusion does not influence the risk for necrotizing enterocolitis: a case-control study. J Neonatal-Perinat Med 2014;7(1):21–27. DOI: 10.3233/NPM-1475513.
Patel RM, Knezevic A, Shenvi N, et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. Journal of the American Medical Association 2016;315(9):889–897. DOI: 10.1001/jama.2016.1204.
Marin T, Josephson CD, Kosmetatos N, et al. Feeding preterm infants during red blood cell transfusion is associated with a decline in postprandial mesenteric oxygenation. J Pediat 2014;165(3):464–471.e1. DOI: 10.1016/j.jpeds.2014.05.009.
Balegar KKV, Jayawardhana M, Martin AJ, et al. Association of bolus feeding with splanchnic and cerebral oxygen utilization efficiency among premature infants with anemia and after blood transfusion. JAMA Netw Open 2020;3(2):e200149. DOI: 10.1001/jamanetworkopen.2020.0149.
Schindler T, Yeo KT, Bolisetty S, et al. FEEding DURing red cell transfusion (FEEDUR RCT): a multi-arm randomised controlled trial. BMC Pediatr 2020;20(1):346. DOI: 10.1186/s12887-020-02233-3.
Scheeren TWL, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput 2012;26(4):279–287. DOI: 10.1007/s10877-012-9348-y.
Le Bouhellec J, Prodhomme O, Mura T, et al. Near-infrared spectroscopy: a tool for diagnosing necrotizing enterocolitis at onset of symptoms in preterm neonates with acute gastrointestinal symptoms? Am J Perinatol 2021;38(S 01):e299–e308. DOI: 10.1055/s-0040-1710033.
Goldstein SD, Beaulieu RJ, Niño DF, et al. Early detection of necrotizing enterocolitis using broadband optical spectroscopy. J Pediatr Surg 2018;53(6):1192–1196. DOI: 10.1016/j.jpedsurg. 2018.02.083.