Newborn

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Related articles

VOLUME 1 , ISSUE 1 ( January-March, 2022 ) > List of Articles

REVIEW ARTICLE

New Therapeutic Targets in Neonatal Pulmonary Hypertension

Julie A Dillard, Claire Murray, Amit A Mathur

Keywords : Extracorporeal membrane oxygenation, Neonate, Persistent pulmonary hypertension of the newborn, Pulmonary hypertension

Citation Information : Dillard JA, Murray C, Mathur AA. New Therapeutic Targets in Neonatal Pulmonary Hypertension. 2022; 1 (1):158-169.

DOI: 10.5005/jp-journals-11002-0015

License: CC BY-NC 4.0

Published Online: 31-03-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Persistent pulmonary hypertension of the newborn (PPHN) is a significant cause of morbidity and mortality in neonates. Despite advances in medical care, mortality remains high. In the United States, inhaled nitric oxide is the gold standard treatment in patients with PPHN. However, while it decreases the need for extracorporeal membrane oxygenation, many patients do not respond to inhaled nitric oxide, and it does not improve overall mortality in those with PPHN. Furthermore, its use is cost-prohibitive in many parts of the world. Thus, there is a critical need to research alternative therapies to improve neonatal outcomes. In this review, we present the animal and human data of some emerging therapeutic targets for pulmonary hypertension, prioritizing pediatric and neonatal data when available. Specifically, we discuss the role of soluble guanylate cyclase stimulators and activators, prostacyclin and analogues, phosphodiesterase 3, 4, and 5 inhibitors, rho-kinase inhibitors, endothelin receptor blockers, PPARγ agonists, and antioxidants in the treatment of neonates with PPHN.


HTML PDF Share
  1. Nair J, Lakshminrusimha S. Update on PPHN: Mechanisms and Treatment. Semin Perinatol 2014;38(2):78–91. DOI: 10.1053/j.semperi.2013.11.004.
  2. Steinhorn RH. Neonatal Pulmonary Hypertension. Pediatr Crit Care Med 2010;11(Suppl 2):S79–S84. DOI: 10.1097/PCC.0b013e3181c76cdc.
  3. Clark RH, Kueser TJ, Walker MW, et al. Low-dose Nitric Oxide Therapy for Persistent Pulmonary Hypertension of The Newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 2000;342(7): 469–474. DOI: 10.1056/NEJM200002173420704.
  4. Group NINOS. Inhaled Nitric Oxide in Full-term and Nearly Full-Term Infants with Hypoxic Respiratory Failure. N Engl J Med 1997;336(9):597–604. DOI: 10.1056/NEJM199702273360901.
  5. Barrington KJ, Finer N, Pennaforte T, et al. Nitric Oxide for Respiratory Failure in Infants Born at or Near Term. Cochrane Database Syst Rev 2017;1:CD000399. DOI: 10.1002/14651858.CD000399.pub3.
  6. Clark RH, Huckaby JL, Kueser TJ, et al. Low-dose Nitric Oxide Therapy for Persistent Pulmonary Hypertension: 1-year Follow-up. J Perinatol 2003;23(4):300–303. DOI: 10.1038/sj.jp.7210908.
  7. Inhaled Nitric Oxide in Term and Near-Term Infants: Neurodevelopmental Follow-Up of the Neonatal Inhaled Nitric Oxide Study Group (NINOS). J Pediatr 2000;136(5):611–617. DOI: 10.1067/mpd.2000.104826.
  8. Konduri GG, Vohr B, Robertson C, et al. Early Inhaled Nitric Oxide Therapy for Term and Near-Term Newborn Infants with Hypoxic Respiratory Failure: Neurodevelopmental Follow-up. J Pediatr 2007;150(3):235–40, 40.e1. DOI: 10.1016/j.jpeds.2006.11.065.
  9. Sandner P, Zimmer DP, Milne GT, et al. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021;264:355–394. DOI: 10.1007/164_2018_197.
  10. Priviero FB, Webb RC. Heme-dependent and Independent Soluble Guanylate Cyclase Activators and Vasodilation. J Cardiovasc Pharmacol 2010;56(3):229–233. DOI: 10.1097/FJC.0b013e3181eb4e75.
  11. Dillard J, Perez M, Chen B. Therapies that Enhance Pulmonary Vascular NO-Signaling in the Neonate. Nitric Oxide 2020;95:45–54. DOI: 10.1016/j.niox.2019.12.003.
  12. Becker EM, Stasch JP, Bechem M, et al. Effects of Different Pulmonary Vasodilators on Arterial Saturation in a Model of Pulmonary Hypertension. PLoS One 2013;8(8):e73502. DOI: 10.1371/journal.pone.0073502.
  13. Freitas CF, Morganti RP, Annichino-Bizzacchi JM, et al. Effect of BAY 41-2272 in the Pulmonary Hypertension Induced by Heparin-protamine Complex in Anaesthetized Dogs. Clin Exp Pharmacol Physiol 2007;34(1–2):10–14. DOI: 10.1111/j.1440-1681.2007.04524.x.
  14. Deruelle P, Grover TR, Storme L, et al. Effects of BAY 41-2272, a Soluble Guanylate Cyclase Activator, on Pulmonary Vascular Reactivity in the Ovine Fetus. Am J Physiol Lung Cell Mol Physiol 2005;288(4): L727–L733. DOI: 10.1152/ajplung.00409.2004.
  15. Deruelle P, Grover TR, Abman SH. Pulmonary Vascular Effects of Nitric Oxide-cGMP Augmentation in a Model of Chronic Pulmonary Hypertension in Fet al and Neonatal Sheep. Am J Physiol Lung Cell Mol Physiol 2005;289(5):L798–L806. DOI: 10.1152/ajplung.00119.2005.
  16. Badejo AM, Nossaman VE, Pankey EA, et al. Pulmonary and Systemic Vasodilator Responses to the Soluble Guanylyl Cyclase Stimulator, BAY 41-8543, Are Modulated by Nitric Oxide. Am J Physiol Heart Circ Physiol 2010;299(4): H1153-1159. DOI: 10.1152/ajpheart.01101.2009.
  17. Evgenov OV, Ichinose F, Evgenov NV, et al. Soluble Guanylate Cyclase Activator Reverses Acute Pulmonary Hypertension and Augments the Pulmonary Vasodilator Response to Inhaled Nitric Oxide in Awake Lambs. Circulation 2004;110(15):2253–2259. DOI: 10.1161/01.CIR.0000144469.01521.8A.
  18. Ghofrani HA, Galiè N, Grimminger F, et al. Riociguat for the Treatment of Pulmonary Arterial Hypertension. N Engl J Med 2013;369(4):330–340. DOI: 10.1056/NEJMoa1209655.
  19. Rubin LJ, Galiè N, Grimminger F, et al. Riociguat for the Treatment of Pulmonary Arterial Hypertension: A Long-Term Extension Study (PATENT-2). Eur Respir J 2015;45(5):1303–1313. DOI: 10.1183/09031936.00090614.
  20. Hoeper MM, Simonneau G, Corris PA, et al. RESPITE: Switching to Riociguat in Pulmonary Arterial Hypertension Patients with Inadequate Response to Phosphodiesterase-5 Inhibitors. Eur Respir J 2017;50(3). DOI: 10.1183/13993003.02425-2016.
  21. Spreemann T, Bertram H, Happel CM, et al. First-in-child Use of the Oral Soluble Guanylate Cyclase Stimulator Riociguat in Pulmonary Arterial Hypertension. Pulm Circ 2018;8(1):2045893217743123. DOI: 10.1177/2045893217743123.
  22. Stasch JP, Schlossmann J, Hocher B. Renal Effects of Soluble Guanylate Cyclase Stimulators and Activators: A Review of the Preclinical Evidence. Curr Opin Pharmacol 2015;21:95–104. DOI: 10.1016/j.coph.2014.12.014.
  23. Chester M, Tourneux P, Seedorf G, et al. Cinaciguat, a Soluble Guanylate Cyclase Activator, Causes Potent and Sustained Pulmonary Vasodilation in the Ovine Fetus. Am J Physiol Lung Cell Mol Physiol 2009;297(2):L318–325. DOI: 10.1152/ajplung.00062.2009.
  24. Chester M, Seedorf G, Tourneux P, et al. Cinaciguat, a Soluble Guanylate Cyclase Activator, Augments cGMP after Oxidative Stress and Causes Pulmonary Vasodilation In Neonatal Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol 2011;301(5):L755-764. DOI: 10.1152/ajplung.00138.2010.
  25. Pankey EA, Bhartiya M, Badejo AM, et al. Pulmonary and Systemic Vasodilator Responses to the Soluble Guanylyl Cyclase Activator, BAY 60-2770, Are Not Dependent on Endogenous Nitric Oxide or Reduced Heme. Am J Physiol Heart Circ Physiol 2011;300(3):H792–802. DOI: 10.1152/ajpheart.00953.2010.
  26. Evgenov OV, Kohane DS, Bloch KD, et al. Inhaled Agonists of Soluble Guanylate Cyclase Induce Selective Pulmonary Vasodilation. Am J Respir Crit Care Med 2007;176(11):1138–1145. DOI: 10.1164/rccm.200707-1121OC.
  27. Thoonen R, Cauwels A, Decaluwe K, et al. Cardiovascular and Pharmacological Implications of Haem-deficient NO-Unresponsive Soluble Guanylate Cyclase Knock-In Mice. Nat Commun 2015;6:8482. DOI: 10.1038/ncomms9482.
  28. Gheorghiade M, Greene SJ, Filippatos G, et al. Cinaciguat, a Soluble Guanylate Cyclase Activator: Results from the Randomized, Controlled, Phase IIb COMPOSE Programme in Acute Heart Failure Syndromes. Eur J Heart Fail 2012;14(9):1056–1066. DOI: 10.1093/eurjhf/hfs093.
  29. Olschewski H. Inhaled Iloprost for the Treatment of Pulmonary Hypertension. Eur Respir Rev 2009;18(111):29–34. DOI: 10.1183/09059180.00011111.
  30. Lakshminrusimha S, Mathew B, Leach CL. Pharmacologic Strategies in Neonatal Pulmonary Hypertension Other Than Nitric Oxide. Semin Perinatol 2016;40(3):160–173. DOI: 10.1053/j.semperi.2015.12.004.
  31. Zobel G, Dacar D, Rödl S, et al. Inhaled Nitric Oxide Versus Inhaled Prostacyclin and Intravenous Versus Inhaled Prostacyclin in Acute Respiratory Failure with Pulmonary Hypertension in Piglets. Pediatr Res 1995;38(2):198–204. DOI: 10.1203/00006450-199508000-00011.
  32. Lakshminrusimha S, Porta NF, Farrow KN, et al. Milrinone Enhances Relaxation to Prostacyclin and Iloprost in Pulmonary Arteries Isolated from Lambs with Persistent Pulmonary Hypertension of the Newborn. Pediatr Crit Care Med 2009;10(1):106–112. DOI: 10.1097/PCC.0b013e3181936aee.
  33. Ruan CH, Dixon RA, Willerson JT, et al. Prostacyclin Therapy for Pulmonary Arterial Hypertension. Tex Heart Inst J 2010;37(4): 391–399. PMID: 20844610.
  34. Eronen M, Pohjavuori M, Andersson S, et al. Prostacyclin Treatment for Persistent Pulmonary Hypertension of the Newborn. Pediatr Cardiol 1997;18(1):3–7. DOI: 10.1007/s002469900099.
  35. De Jaegere AP, van den Anker JN. Endotracheal Instillation of Prostacyclin in Preterm Infants with Persistent Pulmonary Hypertension. Eur Respir J 1998;12(4):932–934. DOI: 10.1183/09031936.98.12040932.
  36. Ahmad KA, Banales J, Henderson CL, et al. Intravenous Epoprostenol Improves Oxygenation Index in Patients with Persistent Pulmonary Hypertension of the Newborn Refractory to Nitric Oxide. J Perinatol 2018;38(9):1212–1219. DOI: 10.1038/s41372-018-0179-7.
  37. Lang IM, Gaine SP. Recent Advances in Targeting the Prostacyclin Pathway in Pulmonary Arterial Hypertension. Eur Respir Rev 2015;24(138):630–641. DOI: 10.1183/16000617.0067-2015.
  38. Lawrence KM, Hedrick HL, Monk HM, et al. Treprostinil Improves Persistent Pulmonary Hypertension Associated with Congenital Diaphragmatic Hernia. J Pediatr 2018;200:44–49. DOI: 10.1016/j.jpeds.2018.04.052.
  39. Olschewski H, Simonneau G, Galiè N, et al. Inhaled Iloprost for Severe Pulmonary Hypertension. N Engl J Med 2002;347(5):322–329. DOI: 10.1056/NEJMoa020204.
  40. Kim SH, Lee HJ, Kim NS, et al. Inhaled Iloprost as a First-Line Therapy for Persistent Pulmonary Hypertension of the Newborn. Neonat Med 2019;191–197. DOI: 10.5385/nm.2019.26.4.191
  41. Kahveci H, Yilmaz O, Avsar UZ, et al. Oral Sildenafil and Inhaled Iloprost in the Treatment of Pulmonary Hypertension of the Newborn. Pediatr Pulmonol 2014;49(12):1205–1213. DOI: 10.1002/ppul.22985.
  42. DiBlasi RM, Crotwell DN, Shen S, et al. Iloprost Drug Delivery During Infant Conventional and High-Frequency Oscillatory Ventilation. Pulm Circ 2016;6(1):63–69. DOI: 10.1086/685080.
  43. Zuo H, Cattani-Cavalieri I, Musheshe N, et al. Phosphodiesterases as Therapeutic Targets for Respiratory Diseases. Pharmacol Ther 2019;197:225–242. 10.1016/j.pharmthera.2019.02.002.
  44. Soderling SH, Beavo JA. Regulation of cAMP and cGMP Signaling: New Phosphodiesterases and New Functions. Curr Opin Cell Biol 2000;12(2):174–179. DOI: 10.1016/s0955-0674(99)00073-3.
  45. Murray F, MacLean MR, Pyne NJ. Increased Expression of the cGMP-inhibited cAMP-Specific (PDE3) and cGMP Binding cGMP-specific (PDE5) Phosphodiesterases in Models of Pulmonary Hypertension. Br J Pharmacol 2002;137(8):1187–1194. DOI: 10.1038/sj.bjp.0704984.
  46. Murray F, Patel HH, Suda RY, et al. Expression and Activity of cAMP Phosphodiesterase Isoforms in Pulmonary Artery Smooth Muscle Cells from Patients with Pulmonary Hypertension: Role for PDE1. Am J Physiol Lung Cell Mol Physiol 2007;292(1):L294–L303. DOI: 10.1152/ajplung.00190.2006.
  47. Rashid N, Morin FC, Swartz DD, et al. Effects of Prostacyclin and Milrinone On Pulmonary Hemodynamics in Newborn Lambs with Persistent Pulmonary Hypertension Induced by Ductal Ligation. Pediatr Res 2006;60(5):624–629. DOI: 10.1203/01.pdr.0000242343.84510.81.
  48. Thelitz S, Oishi P, Sanchez LS, et al. Phosphodiesterase-3 Inhibition Prevents the Increase in Pulmonary Vascular Resistance Following Inhaled Nitric Oxide Withdrawal in Lambs. Pediatr Crit Care Med 2004;5(3):234–239. DOI: 10.1097/01.pcc.0000124021.25393.2d.
  49. Hentschel T, Yin N, Riad A, et al. Inhalation of the Phosphodiesterase-3 Inhibitor Milrinone Attenuates Pulmonary Hypertension in a Rat Model of Congestive Heart Failure. Anesthesiology 2007;106(1):124–131. DOI: 10.1097/00000542-200701000-00021.
  50. Bassler D, Choong K, McNamara P, et al. Neonatal Persistent Pulmonary Hypertension Treated with Milrinone: Four Case Reports. Biol Neonate 2006;89(1):1–5. DOI: 10.1159/000088192.
  51. McNamara PJ, Laique F, Muang-In S, et al. Milrinone Improves Oxygenation in Neonates with Severe Persistent Pulmonary Hypertension of the Newborn. J Crit Care 2006;21(2):217–222. DOI: 10.1016/j.jcrc.2006.01.001.
  52. McNamara PJ, Shivananda SP, Sahni M, et al. Pharmacology of Milrinone in Neonates with Persistent Pulmonary Hypertension of the Newborn and Suboptimal Response to Inhaled Nitric Oxide. Pediatr Crit Care Med 2013;14(1):74–84. DOI: 10.1097/PCC.0b013e31824ea2cd.
  53. Busch CJ, Graveline AR, Jiramongkolchai K, et al. Phosphodiesterase 3A expression is modulated by nitric oxide in rat pulmonary artery smooth muscle cells. J Physiol Pharmacol 2010;61(6):663–669. PMID: 21224496.
  54. Chen B, Lakshminrusimha S, Czech L, et al. Regulation of Phosphodiesterase 3 in the Pulmonary Arteries During the Perinatal Period in Sheep. Pediatr Res 2009;66(6):682–687. DOI: 10.1203/PDR.0b013e3181bce574.
  55. Deb B, Bradford K, Pearl RG. Additive Effects of Inhaled Nitric Oxide and Intravenous Milrinone in Experimental Pulmonary Hypertension. Crit Care Med 2000;28(3):795–799. DOI: 10.1097/00003246-200003000-00031.
  56. Dillard J, Meng X, Nelin L, et al. Nitric Oxide Activates AMPK by Modulating PDE3A in Human Pulmonary Artery Smooth Muscle Cells. Physiol Rep 2020;8(17):e14559. DOI: 10.14814/phy2.14559.
  57. Hoffman TM, Wernovsky G, Atz AM, et al. Efficacy and Safety of Milrinone in Preventing Low Cardiac Output Syndrome in Infants and Children after Corrective Surgery for Congenital Heart Disease. Circulation 2003;107(7):996–1002. DOI: 10.1161/01.cir.0000051365.81920.28.
  58. Jain A, Sahni M, El-Khuffash A, et al. Use of Targeted Neonatal Echocardiography to Prevent Postoperative Cardiorespiratory Instability after Patent Ductus Arteriosus Ligation. J Pediatr 2012;160(4):584–589.e1. DOI: 10.1016/j.jpeds.2011.09.027.
  59. Hallik M, Ilmoja ML, Tasa T, et al. Population Pharmacokinetics and Dosing of Milrinone After Patent Ductus Arteriosus Ligation in Preterm Infants. Pediatr Crit Care Med 2019;20(7):621–629. DOI: 10.1097/PCC.0000000000001879.
  60. Bassler D, Kreutzer K, McNamara P, et al. Milrinone for persistent pulmonary hypertension of the newborn. Cochrane Database Syst Rev 2010(11):CD007802. DOI: 10.1002/14651858.CD007802.pub2.
  61. James AT, Corcoran JD, McNamara PJ, et al. The Effect of Milrinone on Right and Left Ventricular Function When Used as a Rescue Therapy for Term Infants with Pulmonary Hypertension. Cardiol Young 2016;26(1):90–99. DOI: 10.1017/S1047951114002698.
  62. James AT, Bee C, Corcoran JD, et al. Treatment of Premature Infants with Pulmonary Hypertension and Right Ventricular Dysfunction with Milrinone: A Case Series. J Perinatol 2015;35(4):268–273. DOI: 10.1038/jp.2014.208.
  63. El-Ghandour M, Hammad B, Ghanem M, et al. Efficacy of Milrinone Plus Sildenafil in the Treatment of Neonates with Persistent Pulmonary Hypertension in Resource-Limited Settings: Results of a Randomized, Double-Blind Trial. Paediatr Drug 2020;22(6):685–693. DOI: 10.1007/s40272-020-00412-4.
  64. Giaccone A, Zuppa AF, Sood B, et al. Milrinone Pharmacokinetics and Pharmacodynamics in Neonates with Persistent Pulmonary Hypertension of the Newborn. Am J Perinatol 2017;34(8):749–758. DOI: 10.1055/s-0036-1597996.
  65. Azevedo MF, Faucz FR, Bimpaki E, et al. Clinical and Molecular Genetics of the Phosphodiesterases (PDEs). Endocr Rev 2014;35(2):195–233. DOI: 10.1210/er.2013-1053.
  66. Beghè B, Rabe KF, Fabbri LM. Phosphodiesterase-4 Inhibitor Therapy for Lung Diseases. Am J Respir Crit Care Med 2013;188(3):271–278. DOI: 10.1164/rccm.201301-0021PP.
  67. Baye J. Roflumilast (daliresp): A Novel Phosphodiesterase-4 Inhibitor for the Treatment of Severe Chronic Obstructive Pulmonary Disease. PT 2012;37(3):149–161. PMID: 22605906.
  68. Nose T, Kondo M, Shimizu M, et al. Pharmacological Profile of GPD-1116, an Inhibitor of Phosphodiesterase 4. Biol Pharm Bull 2016;39(5):689–698. DOI: 10.1248/bpb.b15-00652.
  69. Woyda K, Koebrich S, Reiss I, et al. Inhibition of Phosphodiesterase 4 Enhances Lung Alveolarisation in Neonatal Mice Exposed to Hyperoxia. Eur Respir J 2009;33(4):861–870. DOI: 10.1183/09031936.00109008.
  70. Méhats C, Franco-Montoya ML, Boucherat O, et al. Effects of Phosphodiesterase 4 Inhibition On Alveolarization and Hyperoxia Toxicity in Newborn Rats. PLoS One 2008;3(10):e3445. DOI: 10.1371/journal.pone.0003445.
  71. de Visser YP, Walther FJ, Laghmani EH, et al. Phosphodiesterase-4 Inhibition Attenuates Pulmonary Inflammation in Neonatal Lung Injury. Eur Respir J 2008;31(3):633–644. DOI: 10.1183/09031936.00071307.
  72. de Visser YP, Walther FJ, Laghmani eH, et al. Phosphodiesterase 4 Inhibition Attenuates Persistent Heart and Lung Injury by Neonatal Hyperoxia in Rats. Am J Physiol Lung Cell Mol Physiol 2012;302(1):L56–67. DOI: 10.1152/ajplung.00041.2011.
  73. Garnock-Jones KP. Roflumilast: A Review in COPD. Drugs 2015;75(14):1645–1656. DOI: 10.1007/s40265-015-0463-1.
  74. Chong J, Poole P, Leung B, et al. Phosphodiesterase 4 Inhibitors for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst Rev 2011(5):CD002309. DOI: 10.1002/14651858.CD002309.pub3.
  75. Phillips JE. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front Pharmacol 2020;11:259. DOI: 10.3389/fphar.2020.00259.
  76. Zhang C, Xu Y, Zhang HT, et al. Comparison of the Pharmacological Profiles of Selective PDE4B and PDE4D Inhibitors in the Central Nervous System. Sci Rep 2017;7:40115. DOI: 10.1038/srep40115.
  77. Corbin JD, Beasley A, Blount MA, et al. High Lung PDE5: A Strong Basis for Treating Pulmonary Hypertension with PDE5 Inhibitors. Biochem Biophys Res Commun 2005;334(3):930–938. DOI: 10.1016/j.bbrc.2005.06.183.
  78. Butrous G. The Role of Phosphodiesterase Inhibitors in the Management of Pulmonary Vascular Diseases. Glob Cardiol Sci Pract 2014;2014(3):257–290. DOI: 10.5339/gcsp.2014.42.
  79. Wharton J, Strange JW, Møller GM, et al. Antiproliferative effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells. Am J Respir Crit Care Med 2005;172(1):105–113. DOI: 10.1164/rccm.200411-1587OC.
  80. Farrow KN, Groh BS, Schumacker PT, et al. Hyperoxia Increases Phosphodiesterase 5 Expression and Activity in Ovine Fetal Pulmonary Artery Smooth Muscle Cells. Circ Res 2008;102(2):226–233. DOI: 10.1161/CIRCRESAHA.107.161463.
  81. Farrow KN, Wedgwood S, Lee KJ, et al. Mitochondrial Oxidant Stress Increases PDE5 Activity in Persistent Pulmonary Hypertension of the Newborn. Respir Physiol Neurobiol 2010;174(3):272–281. DOI: 10.1016/j.resp.2010.08.018.
  82. Farrow KN, Lakshminrusimha S, Czech L, et al. SOD and Inhaled Nitric Oxide Normalize Phosphodiesterase 5 Expression and Activity in Neonatal Lambs with Persistent Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol 2010;299(1):L109–L116. DOI: 10.1152/ajplung.00309.2009.
  83. Shekerdemian LS, Ravn HB, Penny DJ. Intravenous Sildenafil Lowers Pulmonary Vascular Resistance in a Model of Neonatal Pulmonary Hypertension. Am J Respir Crit Care Med 2002;165(8):1098–1102. DOI: 10.1164/ajrccm.165.8.2107097.
  84. Tessler RB, Zadinello M, Fiori H, et al. Tadalafil Improves Oxygenation in a Model of Newborn Pulmonary Hypertension. Pediatr Crit Care Med 2008;9(3):330–332. DOI: 10.1097/PCC.0b013e31816c7035.
  85. Dukarm RC, Morin FC, Russell JA, et al. Pulmonary and Systemic Effects of the Phosphodiesterase Inhibitor Dipyridamole in Newborn Lambs with Persistent Pulmonary Hypertension. Pediatr Res 1998;44(6): 831–837. DOI: 10.1203/00006450-199812000-00002.
  86. Binns-Loveman KM, Kaplowitz MR, Fike CD. Sildenafil and an Early Stage of Chronic Hypoxia-Induced Pulmonary Hypertension in Newborn Piglets. Pediatr Pulmonol 2005;40(1):72–80. DOI: 10.1002/ppul.20229.
  87. Zhao L, Mason NA, Morrell NW, et al. Sildenafil Inhibits Hypoxia-Induced Pulmonary Hypertension. Circulation 2001;104(4):424–428. DOI: 10.1161/hc2901.093117.
  88. Sebkhi A, Strange JW, Phillips SC, et al. Phosphodiesterase Type 5 as a Target for the Treatment of Hypoxia-Induced Pulmonary Hypertension. Circulation 2003;107(25):3230–3235. DOI: 10.1161/01.CIR.0000074226.20466.B1.
  89. Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–2157. DOI: 10.1056/NEJMoa050010.
  90. Rubin LJ, Badesch DB, Fleming TR, et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest. 2011;140(5):1274–1283. DOI: 10.1378/chest.10-0969.
  91. Nakwan N, Chaiwiriyawong P. An international survey on persistent pulmonary hypertension of the newborn: A need for an evidence-based management. J Neonatal Perinatal Med. 2016;9(3):243–250. DOI: 10.3233/NPM-16915133.
  92. Steinhorn RH, Kinsella JP, Pierce C, et al. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr 2009;155(6):841-7.e1. DOI: 10.1016/j.jpeds.2009.06.012.
  93. Herrera T, Concha G, Holberto C, et al. Oral Sildenafil as an Alternative Treatment in the Persistent Pulmonary Hypertension in Newborns [Sildenafil oral como alternativa en el tratamiento de recien nacidos con hipertension pulmonar persistente]. Revista Mexicana de Pediatria 2006;159–163.
  94. Baquero H, Soliz A, Neira F, et al. Oral Sildenafil in Infants with Persistent Pulmonary Hypertension of the Newborn: A Pilot Randomized Blinded Study. Pediatrics 2006;117(4):1077–1083. DOI: 10.1542/peds.2005-0523.
  95. Vargas-Origel A, Gómez-Rodríguez G, Aldana-Valenzuela C, et al. The Use of Sildenafil in Persistent Pulmonary Hypertension of the Newborn. Am J Perinatol 2010;27(3):225–230. DOI: 10.1055/s-0029-1239496.
  96. Kelly LE, Ohlsson A, Shah PS. Sildenafil for Pulmonary Hypertension in Neonates. Cochrane Database Syst Rev 2017;8:CD005494. DOI: 10.1002/14651858.CD005494.pub4.
  97. Uslu S, Kumtepe S, Bulbul A, et al. A Comparison of Magnesium Sulphate and Sildenafil in the Treatment of the Newborns with Persistent Pulmonary Hypertension: A Randomized Controlled Trial. J Trop Pediatr 2011;57(4):245–250. DOI: 10.1093/tropej/fmq091.
  98. Al Omar S, Salama H, Al Hail M, et al. Effect of Early Adjunctive Use of Oral Sildenafil and Inhaled Nitric Oxide on the Outcome of Pulmonary Hypertension in Newborn Infants. A Feasibility Study. J Neonatal Perinatal Med 2016;9(3):251–259. DOI: 10.3233/NPM-16161.
  99. Fatima N, Arshad S, Quddusi AI, et al. Comparison of the Efficacy of Sildenafil Alone Versus Sildenafil Plus Bosentan in Newborns With Persistent Pulmonary Hypertension. J Ayub Med Coll Abbottabad 2018;30(3):333–336. PMID: 30465360.
  100. Mourani PM, Sontag MK, Ivy DD, et al. Effects of Long-term Sildenafil Treatment for Pulmonary Hypertension in Infants with Chronic Lung Disease. J Pediatr 2009;154(3):379–84, 84.e1-2. DOI: 10.1016/j.jpeds.2008.09.021.
  101. Nyp M, Sandritter T, Poppinga N, et al. Sildenafil Citrate, Bronchopulmonary Dysplasia and Disordered Pulmonary Gas Exchange: Any Benefits? J Perinatol 2012;32(1):64–69. DOI: 10.1038/jp.2011.131.
  102. Backes CH, Reagan PB, Smith CV, et al. Sildenafil Treatment of Infants With Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension. Hosp Pediatr 2016;6(1):27–33. DOI: 10.1542/hpeds.2015-0076.
  103. Cochius-den Otter S, Schaible T, Greenough A, et al. The CoDiNOS Trial Protocol: An International Randomised Controlled Trial of Intravenous Sildenafil Versus Inhaled Nitric Oxide for the Treatment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia. BMJ Open 2019;9(11):e032122. DOI: 10.1136/bmjopen-2019-032122.
  104. Shiva A, Shiran M, Rafati M, et al. Oral Tadalafil in Children with Pulmonary Arterial Hypertension. Drug Res (Stuttg) 2016;66(1):7–10. DOI: 10.1055/s-0034-1395510.
  105. Reza AM, Hossein LM, Mahdieh NS, et al. Comparison of Tadalafil and Sildenafil in Controlling Neonatal Persistent Pulmonary Hypertension. Iran J Pediatr 2017;e6385. DOI: 10.5812/ijp.6385.
  106. Sabri MR, Bigdelian H, Hosseinzadeh M, et al. Comparison of the Therapeutic Effects and Side Effects of Tadalafil and Sildenafil after Surgery in Young Infants with Pulmonary Arterial Hypertension Due to Systemic-To-Pulmonary Shunts. Cardiol Young 2017;27(9): 1686–1693. DOI: 10.1017/S1047951117000981.
  107. Barman SA, Zhu S, White RE. RhoA/Rho-Kinase Signaling: A Therapeutic Target in Pulmonary Hypertension. Vasc Health Risk Manag 2009;5:663–671. DOI: 10.2147/vhrm.s4711.
  108. McNamara PJ, Murthy P, Kantores C, et al. Acute Vasodilator Effects of Rho-Kinase Inhibitors in Neonatal Rats with Pulmonary Hypertension Unresponsive to Nitric Oxide. Am J Physiol Lung Cell Mol Physiol 2008;294(2):L205–213. DOI: 10.1152/ajplung.00234.2007.
  109. Parker TA, Roe G, Grover TR, et al. Rho Kinase Activation Maintains High Pulmonary Vascular Resistance in the Ovine Fetal Lung. Am J Physiol Lung Cell Mol Physiol 2006;291(5):L976–982. DOI: 10.1152/ajplung.00512.2005.
  110. Liu Y, Meng X, Wang X, et al. The Role of phosphodiesterase (Pde) 3B in the Inflammatory Response of Macrophages to LPS. J Immunol 2020;204(1).
  111. Ishikura K, Yamada N, Ito M, et al. Beneficial Acute Effects of Rho-kinase Inhibitor in Patients with Pulmonary Arterial Hypertension. Circ J 2006;70(2):174–178. DOI: 10.1253/circj.70.174.
  112. Fukumoto Y, Matoba T, Ito A, et al. Acute Vasodilator Effects of a Rho-kinase Inhibitor, Fasudil, in Patients with Severe Pulmonary Hypertension. Heart 2005;91(3):391–392. DOI: 10.1136/hrt.2003.029470.
  113. Fukumoto Y, Yamada N, Matsubara H, et al. Double-blind, Placebo-controlled Clinical Trial with a Rho-kinase Inhibitor in Pulmonary Arterial Hypertension. Circ J 2013;77(10):2619–2625. DOI: 10.1253/circj.cj-13-0443.
  114. Jiang R, Ai ZS, Jiang X, et al. Intravenous Fasudil Improves In-Hospital Mortality of Patients with Right Heart Failure in Severe Pulmonary Hypertension. Hypertens Res 2015;38(8): 539–544. DOI: 10.1038/hr.2015.33.
  115. Li F, Xia W, Yuan S, et al. Acute Inhibition of Rho-kinase Attenuates Pulmonary Hypertension in Patients with Congenital Heart Disease. Pediatr Cardiol 2009;30(3):363–366. DOI: 10.1007/s00246-008-9315-z.
  116. Christou H, Adatia I, Van Marter LJ, et al. Effect of Inhaled Nitric Oxide on Endothelin-1 and Cyclic Guanosine 5’-Monophosphate Plasma Concentrations in Newborn Infants with Persistent Pulmonary Hypertension. J Pediatr 1997;130(4):603–611. DOI: 10.1016/s0022-3476(97)70245-2.
  117. Ivy DD, Parker TA, Ziegler JW, et al. Prolonged Endothelin A Receptor Blockade Attenuates Chronic Pulmonary Hypertension in the Ovine Fetus. J Clin Invest 1997;99(6):1179–1186. DOI: 10.1172/JCI119274.
  118. Barst RJ, Ivy D, Dingemanse J, et al. Pharmacokinetics, Safety, and Efficacy of Bosentan in Pediatric Patients with Pulmonary Arterial Hypertension. Clin Pharmacol Ther 2003;73(4):372–382. DOI: 10.1016/s0009-9236(03)00005-5.
  119. Beghetti M. Bosentan in Pediatric Patients with Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2009;7(2):225–233. DOI: 10.2174/157016109787455653.
  120. Rosenzweig EB, Ivy DD, Widlitz A, et al. Effects of Long-term Bosentan in Children with Pulmonary Arterial Hypertension. J Am Coll Cardiol 2005;46(4):697–704. DOI: 10.1016/j.jacc.2005.01.066.
  121. Hislop AA, Moledina S, Foster H, et al. Long-term Efficacy of Bosentan in Treatment of Pulmonary Arterial Hypertension in Children. Eur Respir J 2011;38(1):70–77. DOI: 10.1183/09031936.00053510.
  122. Maneenil G, Thatrimontrichai A, Janjindamai W, et al. Effect of Bosentan Therapy in Persistent Pulmonary Hypertension of the Newborn. Pediatr Neonatol 2018;59(1):58–64. DOI: 10.1016/j.pedneo.2017.02.003.
  123. Mohamed WA, Ismail M. A Randomized, Double-Blind, Placebo-Controlled, Prospective Study of Bosentan for the Treatment of Persistent Pulmonary Hypertension of the Newborn. J Perinatol 2012;32(8):608–613. DOI: 10.1038/jp.2011.157.
  124. Steinhorn RH, Fineman J, Kusic-Pajic A, et al. Bosentan as Adjunctive Therapy for Persistent Pulmonary Hypertension of the Newborn: Results of the Randomized Multicenter Placebo-Controlled Exploratory Trial. J Pediatr 2016;177: 90–96.e3. DOI: 10.1016/j.jpeds.2016.06.078.
  125. Kroker AJ, Bruning JB. Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. PPAR Res 2015;2015:816856. DOI: 10.1155/2015/816856.
  126. Mathew R. Pulmonary Hypertension and Metabolic Syndrome: Possible Connection, PPARγ and Caveolin-1. World J Cardiol 2014;6(8):692–705. DOI: 10.4330/wjc.v6.i8.692.
  127. Ketsawatsomkron P, Sigmund CD. Molecular Mechanisms Regulating Vascular Tone by Peroxisome Proliferator Activated Receptor Gamma. Curr Opin Nephrol Hypertens 2015;24(2):123–130. DOI: 10.1097/MNH.0000000000000103.
  128. Simon DM, Tsai LW, Ingenito EP, et al. PPARgamma Deficiency Results in Reduced Lung Elastic Recoil and Abnormalities in Airspace Distribution. Respir Res 2010;11:69. DOI: 10.1186/1465-9921-11-69.
  129. Wolf D, Tseng N, Seedorf G, et al. Endothelin-1 Decreases Endothelial PPARγ Signaling and Impairs Angiogenesis after Chronic Intrauterine Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol 2014;306(4):L361–371. DOI: 10.1152/ajplung.00277.2013.
  130. Du Y, Fu J, Yao L, et al. Altered Expression of PPAR-γ and TRPC in Neonatal Rats with Persistent Pulmonary Hypertension. Mol Med Rep 2017;16(2):1117–1124. DOI: 10.3892/mmr.2017.6744.
  131. Hansmann G, de Jesus Perez VA, Alastalo TP, et al. An Antiproliferative BMP-2/PPARgamma/apoE Axis in Human and Murine SMCs and Its Role in Pulmonary Hypertension. J Clin Invest 2008;118(5):1846–1857. DOI: 10.1172/JCI32503.
  132. Crossno JT, Garat CV, Reusch JE, et al. Rosiglitazone Attenuates Hypoxia-Induced Pulmonary Arterial Remodeling. Am J Physiol Lung Cell Mol Physiol 2007;292(4):L885–L897. DOI: 10.1152/ajplung.00258.2006.
  133. Dasgupta C, Sakurai R, Wang Y, et al. Hyperoxia-induced Neonatal Rat Lung Injury Involves Activation of TGF-{beta} and Wnt Signaling and Is Protected by Rosiglitazone. Am J Physiol Lung Cell Mol Physiol 2009;296(6):L1031–1041. DOI: 10.1152/ajplung.90392.2008.
  134. Rehan VK, Sakurai R, Corral J, et al. Antenatally Administered PPAR-Gamma Agonist Rosiglitazone Prevents Hyperoxia-Induced Neonatal Rat Lung Injury. Am J Physiol Lung Cell Mol Physiol 2010;299(5):L672–680. DOI: 10.1152/ajplung.00240.2010.
  135. Gien J, Tseng N, Seedorf G, et al. Peroxisome Proliferator Activated Receptor-γ-Rho-kinase Interactions Contribute to Vascular Remodeling After Chronic Intrauterine Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol 2014;306(3):L299–308. DOI: 10.1152/ajplung.00271.2013.
  136. Mikhael M, Makar C, Wissa A, et al. Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension. Front Physiol 2019;10:1233. DOI: 10.3389/fphys.2019.01233.
  137. Bello-Klein A, Mancardi D, Araujo AS, et al. Role of Redox Homeostasis and Inflammation in the Pathogenesis of Pulmonary Arterial Hypertension. Curr Med Chem 2018;25(11):1340–1351. DOI: 10.2174/0929867325666171226114838.
  138. Pacher P, Beckman JS, Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev 2007;87(1):315–424. DOI: 10.1152/physrev.00029.2006.
  139. Kuzkaya N, Weissmann N, Harrison DG, et al. Interactions of Peroxynitrite, Tetrahydrobiopterin, Ascorbic Acid, and Thiols: Implications for Uncoupling Endothelial Nitric-oxide Synthase. J Biol Chem 2003;278(25):22546–22554. DOI: 10.1074/jbc.M302227200.
  140. Fike CD, Slaughter JC, Kaplowitz MR, et al. Reactive Oxygen Species from NADPH Oxidase Contribute to Altered Pulmonary Vascular Responses in Piglets with Chronic Hypoxia-Induced Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol 2008;295(5):L881–888. DOI: 10.1152/ajplung.00047.2008.
  141. Brennan LA, Steinhorn RH, Wedgwood S, et al. Increased Superoxide Generation Is Associated with Pulmonary Hypertension in Fetal Lambs: A Role for NADPH Oxidase. Circ Res 2003;92(6):683–691. DOI: 10.1161/01.RES.0000063424.28903.BB.
  142. Wedgwood S, Steinhorn RH, Bunderson M, et al. Increased Hydrogen Peroxide Downregulates Soluble Guanylate Cyclase in the Lungs of Lambs with Persistent Pulmonary Hypertension of the Newborn. Am J Physiol Lung Cell Mol Physiol 2005;289(4):L660–666. DOI: 10.1152/ajplung.00369.2004.
  143. Chandrasekar I, Eis A, Konduri GG. Betamethasone Attenuates Oxidant Stress in Endothelial Cells from Fetal Lambs with Persistent Pulmonary Hypertension. Pediatr Res 2008;63(1):67–72. DOI: 10.1203/PDR.0b013e31815b43ee.
  144. Konduri GG, Bakhutashvili I, Eis A, et al. Oxidant Stress from Uncoupled Nitric Oxide Synthase Impairs Vasodilation in Fetal Lambs with Persistent Pulmonary Hypertension. Am J Physiol Heart Circ Physiol 2007;292(4):H1812–820. DOI: 10.1152/ajpheart.00425.2006.
  145. Afolayan AJ, Eis A, Alexander M, et al. Decreased Endothelial Nitric Oxide Synthase Expression and Function Contribute to Impaired Mitochondrial Biogenesis and Oxidative Stress in Fetal Lambs with Persistent Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol 2016;310(1):L40–49. DOI: 10.1152/ajplung.00392.2014.
  146. Aruoma OI, Halliwell B, Hoey BM, et al. The Antioxidant Action of N-Acetylcysteine: Its Reaction with Hydrogen Peroxide, Hydroxyl Radical, Superoxide, and Hypochlorous Acid. Free Radic Biol Med 1989;6(6):593–597. DOI: 10.1016/0891-5849(89)90066-x.
  147. Mokra D, Drgova A, Mokry J, et al. N-acetylcysteine Effectively Diminished Meconium-induced Oxidative Stress in Adult Rabbits. J Physiol Pharmacol 2015;66(1):101–110. PMID: 25716970.
  148. Sandberg K, Fellman V, Stigson L, et al. N-Acetylcysteine Administration During the First Week of Life Does Not Improve Lung Function in Extremely Low Birth Weight Infants. Biol Neonate 2004;86(4):275–279. DOI: 10.1159/000080089.
  149. Ahola T, Lapatto R, Raivio KO, et al. N-acetylcysteine Does Not Prevent Bronchopulmonary Dysplasia in Immature Infants: A Randomized Controlled Trial. J Pediatr 2003;143(6):713–719. DOI: 10.1067/S0022-3476(03)004
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.