Newborn

Register      Login

VOLUME 1 , ISSUE 1 ( January-March, 2022 ) > List of Articles

REVIEW ARTICLE

Iron Deficiency in Newborn Infants: Global Rewards for Recognizing and Treating This Silent Malady

Timothy M Bahr, Diane M Ward

Keywords : Anemia, Erythropoiesis, Erythroferrone, Diagnosis, Hepcidin, Iron, Treatment

Citation Information : Bahr TM, Ward DM. Iron Deficiency in Newborn Infants: Global Rewards for Recognizing and Treating This Silent Malady. 2022; 1 (1):97-103.

DOI: 10.5005/jp-journals-11002-0021

License: CC BY-NC 4.0

Published Online: 31-03-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Iron deficiency can exist at birth. Even if iron is sufficient at birth, deficiency can develop during the neonatal period, or during infancy, or during childhood. Iron deficiency can exist despite a normal hematocrit and a normal blood hemoglobin concentration, because anemia is a very late manifestation of iron deficiency. It is likely that adverse neurodevelopmental consequences occur during perinatal biochemical iron deficiency, despite a normal hematocrit and hemoglobin. Consequently, measuring those parameters is a very insensitive method for perinatal iron deficiency screening. This review focuses on potentially better practices for diagnosing perinatal iron deficiency, including recent advances in understanding the pathogenesis of this condition, and also on practical means of treatment, and on global rewards of so doing.


HTML PDF Share
  1. Georgieff MK. Iron deficiency in pregnancy. Am J Obstet Gynecol 2020;223(4):516–524. DOI: 10.1016/j.ajog.2020.03.006.
  2. Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol 2006;13(3):158–165. DOI: 10.1016/j.spen.2006.08.004.
  3. Saboor M, Zehra A, Hamali HA, et al. Revisiting iron metabolism, iron homeostasis and iron deficiency anemia. Clin Lab 2021;67(3). DOI: 10.7754/Clin.Lab.2020.200742.
  4. Al-Naseem A, Sallam A, Choudhury S, et al. Iron deficiency without anaemia: a diagnosis that matters. Clin Med (Lond) 2021;21(2):107–113. DOI: 10.7861/clinmed.2020-0582.
  5. Urrechaga E, Borque L, Escanero JF. Percentage of hypochromic erythrocytes as a potential marker of iron availability. Clin Chem Lab Med 2011;50(4):685–687. DOI: 10.1515/cclm.2011.837.
  6. Bahr TM, Christensen TR, Henry E, et al. Neonatal reference intervals for the CBC parameters “Micro-R” and “HYPO-He”: sensitivity beyond the red cell indices for identifying microcytic and hypochromic disorders. J Pediatr 2021;239(11):95–100.e2. DOI: 10.1016/j.jpeds.2021.08.002 [in press].
  7. MacQueen BC, Christensen RD, Ward DM, et al. The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study. J Perinatol 2017;37(4):436–440. DOI: 10.1038/jp.2016.234.
  8. Vlasova RM, Wang Q, Willette A, et al. Infantile iron deficiency affects brain development in monkeys even after treatment of anemia. Front Hum Neurosci 2021;15:624107. DOI: 10.3389/fnhum.2021.624107.
  9. Lozoff B, Beard J, Connor J, et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006;64(5 Pt 2):S34–S91. DOI: 10.1301/nr.2006.may.s34-s43.
  10. Callahan LSN, Thibert KA, Wobken JD, et al. Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Dev Neurosci 2013;35(5):427–436. DOI: 10.1159/000354178.
  11. Andreini C, Putignano V, Rosato A, et al. The human iron-proteome. Metallomics 2018;10(9):1223–1231. DOI: 10.1039/c8mt00146d.
  12. Juul SE, Derman RJ, Auerbach M. Perinatal iron deficiency: implications for mothers and infants. Neonatology 2019;115(3):269–274. DOI: 10.1159/000495978.
  13. Singla PN, Tyagi M, Shankar R, et al. Fetal iron status in maternal anemia. Acta Paediatr 1996;85(11):1327–1330. DOI: 10.1111/j.1651-2227.1996.tb13919.x.
  14. Shao J, Lou J, Rao R, et al. Maternal serum ferritin concentration is positively associated with newborn iron stores in women with low ferritin status in late pregnancy. J Nutr 2012;142(11):2004–2009. DOI: 10.3945/jn.112.162362.
  15. Sangkhae V, Nemeth E. Placental iron transport: the mechanism and regulatory circuits. Free Radic Biol Med 2019;133:254–261. DOI: 10.1016/j.freeradbiomed.2018.07.001.
  16. Phillips AK, Roy SC, Lundberg R, et al. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J Perinatol 2014;34(7):513–518. DOI: 10.1038/jp.2014.42.
  17. Wawer AA, Hodyl NA, Fairweather-Tait S, et al. Are pregnant women who are living with overweight or obesity at greater risk of developing iron deficiency/anaemia? Nutrients 2021;13(5):1572. DOI: 10.3390/nu13051572.
  18. Bahr TM, Benson AE, Kling PJ, et al. Maternal obesity and impaired offspring neurodevelopment: could fetal iron deficiency be a pathogenic link? J Perinatol 2021;41(5):1199–1200. DOI: 10.1038/s41372-021-00951-9.
  19. Radlowski EC, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 2013;7:585. DOI: 10.3389/fnhum.2013.00585.
  20. Wang Y, Wu Y, Li T, et al. Iron metabolism and brain development in premature infants. Front Physiol 2019;10:463. DOI: 10.3389/fphys.2019.00463.
  21. Cusick SE, Georgieff MK, Rao R. Approaches for reducing the risk of early-life iron deficiency-induced brain dysfunction in children. Nutrients 2018;10(2):227. DOI: 10.3390/nu10020227.
  22. Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev 2016;74(7):421–431. DOI: 10.1093/nutrit/nuw009.
  23. Sangkhae V, Fisher AL, Chua KJ, et al. Maternal hepcidin determines embryo iron homeostasis. Blood 2020;136(19):2206–2216. DOI: 10.1182/blood.2020005745.
  24. Bahr TM, Ward DM, Jia X, et al. Is the erythropoietin-erythroferronehepcidin axis intact in human neonates? Blood Cells Mol Dis 2021;88:102536. DOI: 10.1016/j.bcmd.2021.102536.
  25. Coffey R, Ganz T. Erythroferrone: an erythroid regulator of hepcidin and iron metabolism. Hemasphere 2018;2(2):e35. DOI: 10.1097/HS9.0000000000000035.
  26. Srole DN, Ganz T. Erythroferrone structure, function, and physiology: iron homeostasis and beyond. J Cell Physiol 2021;236(7):4888–4901. DOI: 10.1002/jcp.30247.
  27. Greer FR. How much iron is needed for breastfeeding infants? Curr Pediatr Rev 2015;11(4):298–304. DOI: 10.2174/1573396311666150731112726.
  28. Henry E, Christensen RD. Reference intervals in neonatal hematology. Clin Perinatol 2015;42(3):483–497. DOI: 10.1016/j.clp.2015.04.005.
  29. Jopling J, Henry E, Wiedmeier SE, et al. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics 2009;123(2):e333–e337. DOI: 10.1542/peds.2008-2654.
  30. Ayton A, Ibrahim A. The Western diet: a blind spot of eating disorder research?-a narrative review and recommendations for treatmentand research. Nutr Rev 2020;78(7):579–596. DOI: 10.1093/nutrit/nuz089.
  31. Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016;354(6308):69–73. DOI: 10.1126/science.aaf5094.
  32. Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood 2019;133(1):40–50. DOI: 10.1182/blood-2018-06-856500.
  33. Ndevahoma F, Mukesi M, Dludla PV, et al. Body weight and its influence on hepcidin levels in patients with type 2 diabetes: asystematic review and meta-analysis of clinical studies. Heliyon 2021;7(3):e06429. DOI: 10.1016/j.heliyon.2021.e06429.
  34. Tran PV, Fretham SJB, Wobken J, et al. Gestational-neonatal iron deficiency suppresses and iron treatment reactivates IGF signaling in developing rat hippocampus. Am J Physiol Endocrinol Metab 2012;302(3):E316–E324. DOI: 10.1152/ajpendo.00369.2011.
  35. Kling PJ. Iron nutrition, erythrocytes, and erythropoietin in the NICU: erythropoietic and neuroprotective effects. Neoreviews 2020;21(2):e80–e88. DOI: 10.1542/neo.21-2-e80.
  36. McCann S, Perapoch Amadó M, Moore SE. The role of iron in brain development: a systematic review. Nutrients 2020;12(7):2001. DOI: 10.3390/nu12072001.
  37. Moreno-Fernandez J, Ochoa JJ, Latunde-Dada GO, et al. Iron deficiency and iron homeostasis in low birth weight preterm infants: a systematic review. Nutrients 2019;11(5):1090. DOI: 10.3390/nu11051090.
  38. Siddappa AM, Olson RM, Spector M, et al. High prevalence of iron deficiency despite standardized high-dose iron supplementation during recombinant erythropoietin therapy in extremely low gestational age newborns. J Pediatr 2020;222:98–105.e3. DOI: 10.1016/j.jpeds.2020.03.055.
  39. Bahr TM, Baer VL, Ohls RK, et al. Reconciling markedly discordant values of serum ferritin versus reticulocyte hemoglobin content. J Perinatol 2021;41(3):619–626. DOI: 10.1038/s41372-020-00845-2.
  40. Zamora TG, Guiang SF 3rd, Widness JA, et al. Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res 2016;79(6):922–928. DOI: 10.1038/pr.2016.20.
  41. Tran PV, Dakoji S, Reise KH, et al. Fetal iron deficiency alters theproteome of adult rat hippocampal synaptosomes. Am J Physiol Regul Integr Comp Physiol 2013;305:R1297–R1306. DOI: 10.1152/ajpregu.00292.2013.
  42. MacQueen BC, Christensen RD, Baer VL, et al. Screening umbilical cord blood for congenital iron deficiency. Blood Cells Mol Dis 2019;77:95–100. DOI: 10.1016/j.bcmd.2019.04.005.
  43. Garcia-Casal MN, Pasricha SR, Martinez RX, et al. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst Rev 2021;5(5). DOI: 10.1002/14651858.CD011817.pub2.
  44. Bahr TM, Carr NR, Christensen TR, et al. Early iron supplementation and iron sufficiency at one month of age in NICU patients at-risk for iron deficiency. Blood Cells Mol Dis 2021;90:102575. DOI: 10.1016/j.bcmd.2021.102575.
  45. Zhang HD, Cai J, Wu M, et al. Verification of the cut-off value of the reticulocyte hemoglobin content to diagnose iron deficiency. Biomed Environ Sci 2020;33(7):543–546. DOI: 10.3967/bes2020.071.
  46. Amin K, Bansal M, Varley N, et al. Reticulocyte hemoglobin content as a function of iron stores at 35–36 weeks post menstrual age in very premature infants. J Matern Fetal Neonatal Med 2021;34(19):1–6. DOI: 10.1080/14767058.2019.1680631.
  47. Ennis KM, Dahl LV, Rao RB, et al. Reticulocyte hemoglobin content as an early predictive biomarker of brain iron deficiency. Pediatr Res 2018;84(5):765–769. DOI: 10.1038/s41390-018-0178-6.
  48. Lorenz L, Peter A, Arand J, et al. Reference ranges of reticulocyte haemoglobin content in preterm and term infants: a retrospective analysis. Neonatology 2017;111(3):189–194. DOI: 10.1159/000450674.
  49. Ishikawa K, Narita O, Saito H, et al. Determination of ferritin in urine and in serum of normal adults with a sensitive enzyme immunoassay. Clin Chim Acta 1982;123(1–2):73–81. DOI: 10.1016/0009-8981 (82)90115-2.
  50. Bahr TM, Christensen RD, Ward DM, et al. Ferritin in serum and urine: a pilot study. Blood Cells Mol Dis 2019;76:59–62. DOI: 10.1016/j.bcmd.2019.02.001.
  51. Gerday E, Brereton JB, Bahr TM, et al. Urinary ferritin; a potential noninvasive way to screen NICU patients for iron deficiency. J Perinatol 2021;41(6):1419. DOI: 10.1038/s41372-020-0746-6.
  52. Pereira DI, Couto Irving SS, Lomer MC, et al. A rapid, simple questionnaire to assess gastrointestinal symptoms after oral ferrous sulphate supplementation. BMC Gastroenterol 2014;14:103. DOI: 10.1186/1471-230X-14-103.
  53. Abdullah M, Jamil RT, Attia FN. Vitamin C (Ascorbic Acid). 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 29763052.
  54. Pasricha SR, Tye-Din J, Muckenthaler MU, et al. Iron deficiency. Lancet 2021;397(10270):233–248. DOI: 10.1016/S0140-6736(20)32594-0.
  55. Laass MW, Straub S, Chainey S, et al. Effectiveness and safety of ferric carboxymaltose treatment in children and adolescents with inflammatory bowel disease and other gastrointestinal diseases. BMC Gastroenterol 2014;14:184. DOI: 10.1186/1471-230X-14-184.
  56. Golub MS, Hogrefe CE, Tarantal AF, et al. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys. Am J Clin Nutr 2006;83(3):647–656. DOI: 10.1093/ajcn.83.3.647.
  57. Lozoff B, Brittenham GM, Wolf AW, et al. Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics 1987;79(6):981–995 [Erratum in: Pediatrics 1988;81(5):683]. PMID: 2438638.
  58. Lynch SR. Why nutritional iron deficiency persists as a worldwide problem. J Nutr 2011;41(4):763S–768S. DOI: 10.3945/jn.110.130609.
  59. Furnham A, Cheng H. Childhood cognitive ability predicts adult financial well-being. J Intell 2016;5(1):3. DOI: 10.3390/jintelligence5010003.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.