Register      Login



Volume / Issue

Online First

Related articles

VOLUME 1 , ISSUE 1 ( January-March, 2022 ) > List of Articles


Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis

Elizabeth Managlia, Xiaocai Yan, Isabelle G De Plaen

Keywords : Intestinal barrier, Necrotizing enterocolitis, Preterm neonate

Citation Information : Managlia E, Yan X, De Plaen IG. Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis. 2022; 1 (1):32-43.

DOI: 10.5005/jp-journals-11002-0003

License: CC BY-NC 4.0

Published Online: 31-03-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. NEC is characterized by intestinal tissue inflammation and necrosis. The intestinal barrier is altered in NEC, which potentially contributes to its pathogenesis by promoting intestinal bacterial translocation and stimulating the inflammatory response. In premature infants, many components of the intestinal barrier are immature. This article reviews the different components of the intestinal barrier and how their immaturity contributes to intestinal barrier dysfunction and NEC.

  1. Catassi C, Bonucci A, Coppa GV, et al. Intestinal permeability changes during the first month: effect of natural versus artificial feeding. J Pediatr Gastroenterol Nutr 1995;21(4):383–386. DOI: 10.1097/00005176-199511000-00003.
  2. Piena-Spoel M, Albers MJ, ten KJ, et al. Intestinal permeability in newborns with necrotizing enterocolitis and controls: does the sugar absorption test provide guidelines for the time to (re-)introduce enteral nutrition? J Pediatr Surg 2001;36(4):587–592. DOI: 10.1053/jpsu.2001.22288.
  3. Clark JA, Doelle SM, Halpern MD, et al. Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. Am J Physiol Gastrointest Liver Physiol 2006;291(5):G938–G949. DOI: 10.1152/ajpgi.00090.2006.
  4. Feng J, El Assal ON, Besner GE. Heparin-binding epidermal growth factor-like growth factor decreases the incidence of necrotizing enterocolitis in neonatal rats. J Pediatr Surg 2006;41(1):144–149. DOI: 10.1016/j.jpedsurg.2005.10.018.
  5. Bergmann KR, Liu SX, Tian R, et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 2013;182(5):1595–1606. DOI: 10.1016/j.ajpath.2013.01.013.
  6. Irvine EJ, Marshall JK. Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk. Gastroenterology 2000;119(6):1740–1744. DOI: 10.1053/gast.2000.20231.
  7. Arnott ID, Kingstone K, Ghosh S. Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand J Gastroenterol 2000;35(11):1163–1169. DOI: 10.1080/003655200750056637.
  8. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the Muc2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 2011;108:4659–4665. DOI: 10.1073/pnas.1006451107.
  9. Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 2008;105:15064–15069. DOI: 10.1073/pnas.0803124105.
  10. Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013;10(6):352–361. DOI: 10.1038/nrgastro.2013.35.
  11. Ermund A, Schutte A, Johansson ME, et al. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am J Physiol Gastrointest Liver Physiol 2013;305(5):G341–G347. DOI: 10.1152/ajpgi.00046.2013.
  12. Chambers JA, Hollingsworth MA, Trezise AE, et al. Developmental expression of mucin genes MUC1 and Muc2. J Cell Sci 1994;107:413–424. PMID: 7515892.
  13. Schaart MW, de Bruijn AC, Schierbeek H, et al. Small intestinal Muc2 synthesis in human preterm infants. Am J Physiol Gastrointest Liver Physiol 2009;296(5):G1085–G1090. DOI: 10.152/ajpgi.90444. 2008.
  14. McElroy SJ, Prince LS, Weitkamp JH, et al. Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2011;301(4):G656–G666. DOI: 10.1152/ajpgi.00550.2010.
  15. Khailova L, Dvorak K, Arganbright KM, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2009;297(5):G940–G949. DOI: 10.1152/ajpgi.00141.2009.
  16. Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology 2006;131(1):117–129. DOI: 10.1053/j.gastro.2006.04.020.
  17. Tian F, Liu GR, Li N, et al. Insulin-like growth factor I reduces the occurrence of necrotizing enterocolitis by reducing inflammatory response and protecting intestinal mucosal barrier in neonatal rats model. Eur Rev Med Pharmacol Sci 2017;21(20):4711–4719. PMID: 29131241.
  18. Jing Y, Peng F, Shan Y, et al. Berberine reduces the occurrence of neonatal necrotizing enterocolitis by reducing the inflammatory response. Exp Ther Med 2018;16(6):5280–5285. DOI: 10.3892/etm.2018.6871.
  19. Li B, Hock A, Wu RY, et al. Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLoS One 2019;14(1):e0211431. DOI: 10.1371/journal.pone.0211431.
  20. Wu RY, Li B, Koike Y, et al. Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res 2019;63(3):e1800658. DOI: 10.1002/mnfr.201800658.
  21. Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr 1989;115(4):646–651. DOI: 10.1016/s0022-3476(89)80302-6.
  22. Inoue R, Tsuruta T, Nojima I, et al. Postnatal changes in the expression of genes for cryptdins 1-6 and the role of luminal bacteria in cryptdin gene expression in mouse small intestine. FEMS Immunol Med Microbiol 2008;52(3):407–416. DOI: 10.1111/j.1574-695X.2008.00390.x.
  23. Ménard S, Förster V, Lotz M, et al. Developmental switch of intestinal antimicrobial peptide expression. J Exp Med 2008;205(1):183–193. DOI: 10.1084/jem.20071022.
  24. Mallow EB, Harris A, Salzman N, et al. Human enteric defensins. Gene structure and developmental expression. J Biol Chem 1996;271(8):4038–4045. DOI: 10.1074/jbc.271.8.4038.
  25. Kai-Larsen Y, Bergsson G, Gudmundsson GH, et al. Antimicrobial components of the neonatal gut affected upon colonization. Pediatr Res 2007;61:530–536. DOI: 10.1203/pdr.0b013e318045be83.
  26. Underwood MA, Kananurak A, Coursodon CF, et al. Bifidobacterium bifidum in a rat model of necrotizing enterocolitis: antimicrobial peptide and protein responses. Pediatr Res 2012;71(5):546–551. DOI: 10.1038/pr.2012.11.
  27. Vaishnava S, Behrendt CL, Ismail AS, et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 2008;105(52):20858–20863. DOI: 10.1073/pnas.0808723105.
  28. Coutinho HB, da Mota HC, Coutinho VB, et al. Absence of lysozyme (muramidase) in the intestinal Paneth cells of newborn infants with necrotising enterocolitis. J Clin Pathol 1998;51(7):512–514. DOI: 10.1136/jcp.51.7.512.
  29. Salzman NH, Polin RA, Harris MC, et al. Enteric defensin expression in necrotizing enterocolitis. Pediatr Res 1998;44(1):20–26. DOI: 10.1203/00006450-199807000-00003.
  30. Puiman PJ, Burger-Van Paassen N, Schaart MW, et al. Paneth cell hyperplasia and metaplasia in necrotizing enterocolitis. Pediatr Res 2011;69(3):217–223. DOI: 10.1203/PDR.0b013e3182092a9a.
  31. Zhang C, Sherman MP, Prince LS, et al. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 2012;5(4):522–532. DOI: 10.1242/dmm.009001.
  32. Chen L, Lv Z, Gao Z, et al. Human β-defensin-3 reduces excessive autophagy in intestinal epithelial cells and in experimental necrotizing enterocolitis. Sci Rep 2019;9(1):19890. DOI: 10.1038/s41598-019-56535-3.
  33. Lu WC, Zheng X, Liu JF, et al. Effect of Bifidobacterium on the expression of β-defensin-2 in intestinal tissue of neonatal rats with necrotizing enterocolitis. Zhongguo Dang Dai Er Ke Za Zhi 2018;20(3):224–229. DOI: 10.7499/j.issn.1008-8830.2018.03.012.
  34. Dimberg J, Lilja I, Westrom B, et al. Ontogeny of group II phospholipase A2 gene expression in rat stomach and ileum. Biology of the neonate 1995;67(2):113–121. DOI: 10.1159/000244152.
  35. Lu J, Pierce M, Franklin A, et al. Dual roles of endogenous platelet-activating factor acetylhydrolase in a murine model of necrotizing enterocolitis. Pediatr Res 2010;68(3):225–230. DOI: 10.1203/PDR.0b013e3181eb2efe.
  36. Benveniste J, Chignard M, Le Couedic JP, et al. Biosynthesis of platelet-activating factor (PAF-ACETHER). II. Involvement of phospholipase A2 in the formation of PAF-ACETHER and lyso-PAF-ACETHER from rabbit platelets. Thromb Res 1982;25(5):375–385. DOI: 10.1016/0049-3848(82)90128-1.
  37. Hsueh W, Gonzalez-Crussi F, Arroyave JL. Platelet-activating factor-induced ischemic bowel necrosis. An investigation of secondary mediators in its pathogenesis. Am J Pathol 1986;122(2):231–239. PMID: 3080895.
  38. Caplan MS, Hedlund E, Adler L, et al. The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 1997;24(3):296–301. DOI: 10.1097/00005176-199703000-00012.
  39. Lalles JP. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 2010;68(6):323–332. DOI: 10.1111/j.1753-4887.2010.00292.x.
  40. Whitehouse JS, Riggle KM, Purpi DP, et al. The protective role of intestinal alkaline phosphatase in necrotizing enterocolitis. J Surg Res 2010;163(1):79–85. DOI: 10.1016/j.jss.2010.04.048.
  41. Riggle KM, Rentea RM, Welak SR, et al. Intestinal alkaline phosphatase prevents the systemic inflammatory response associated with necrotizing enterocolitis. J Surg Res 2013;180(1): 21–26. DOI: 10.1016/j.jss.2012.10.042.
  42. Rentea RM, Liedel JL, Welak SR, et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg 2012;47(6):1135–1142. DOI: 10.1016/j.jpedsurg.2012.03.018.
  43. Heath M, Buckley R, Gerber Z, et al. Association of intestinal alkaline phosphatase with necrotizing enterocolitis among premature infants. JAMA Netw Open 2019;2(11):e1914996. DOI: 10.1001/jamanetworkopen.2019.14996.
  44. Wong WM, Poulsom R, Wright NA. Trefoil peptides. Gut 1999;44(6):890–895. DOI: 10.1136/gut.44.6.890.
  45. Hoffmann W. Trefoil factors TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cell Mol Life Sci CMLS 2005;62(24):2932–2938. DOI: 10.1007/s00018-005-5481-9.
  46. Mashimo H, Wu DC, Podolsky DK, et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science (New York, NY) 1996;274(5285):262–265. DOI: 10.1126/science.274.5285.262.
  47. Vestergaard EM, Nexo E, Wendt A, et al. Trefoil factors in human milk. Early Hum Dev 2008;84(10):631–635. DOI: 10.1016/j.earlhumdev.2008.04.001.
  48. Vieten D, Corfield A, Carroll D, et al. Impaired mucosal regeneration in neonatal necrotising enterocolitis. Pediatr Surg Int 2005;21(3):153–160. DOI: 10.1007/s00383-004-1312-6.
  49. Liu J, Yang Q, Chen Z, et al. TFF3 mediates the NF-κB/COX2 pathway to regulate PMN-MDSCs activation and protect against necrotizing enterocolitis. Eur J Immunol 2021;51(5):1110–1125. DOI: 10.1002/eji.202048768.
  50. Rognum TO, Thrane S, Stoltenberg L, et al. Development of intestinal mucosal immunity in fetal life and the first postnatal months. Pediatr Res 1992;32(2):145–149. DOI: 10.1203/00006450-199208000-00003.
  51. Axelsson H, Johansson BG, Rymo L. Isolation of immunoglobulin A (IgA) from human colostrum. Acta Chem Scand 1966;20:2339–2348. DOI: 10.3891/acta.chem.scand.20-2339.
  52. Mehta R, Petrova A. Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J Perinatol 2011;31(1):58–62. DOI: 10.1038/jp.2010.68.
  53. Gopalakrishna KP, Macadangdang BR, Rogers MB, et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat Med 2019;25(7):1110–1115. DOI: 10.1038/s41591-019-0480-9.
  54. Weinberg ED. Human lactoferrin: a novel therapeutic with broad spectrum potential. J Pharm Pharmacol 2001;53(10):1303–1310. DOI: 10.1211/0022357011777792.
  55. Rahman MM, Kim WS, Ito T, et al. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe 2009;15(4):133–137. DOI: 10.1016/j.anaerobe.2009.01.003.
  56. Reznikov EA, Comstock SS, Yi C, et al. Dietary bovine lactoferrin increases intestinal cell proliferation in neonatal piglets. J Nutr 2014;144(9):1401–1408. DOI: 10.3945/jn.114.196568.
  57. Sherman MP. Lactoferrin and necrotizing enterocolitis. Clin Perinatal 2013;40(1):79–91. DOI: 10.1016/j.clp.2012.12.006.
  58. Pammi M, Abrams SA. Oral lactoferrin for the treatment of sepsis and necrotizing enterocolitis in neonates. Cochrane Database Syst Rev 2011:CD007138. DOI: 10.1002/14651858.CD007138.pub2.
  59. Liu Y, Perego M, Xiao Q, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Invest 2019;129(10):4261–4275. DOI: 10.1172/JCI128164.
  60. Pammi M, Abrams SA. Enteral lactoferrin for the treatment of sepsis and necrotizing enterocolitis in neonates. Cochrane Database Syst Rev 2019;5(5):CD007138. DOI: 10.1002/14651858.CD007138.pub4.
  61. Shen H, Lei Y, He X, et al. Role of lactadherin in intestinal barrier integrity in experimental neonatal necrotizing enterocolitis. J Cell Biochem 2019;120(12):19509–19517. DOI: 10.1002/jcb.29255.
  62. Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 2000;279(5):G851–G857. DOI: 10.1152/ajpgi.2000.279.5.G851.
  63. Shen L, Weber CR, Raleigh DR, et al. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 2011;73:283–309. DOI: 10.1146/annurev-physiol-012110-142150.
  64. Colegio OR, Van IC, Rahner C, et al. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 2003;284(6):C1346–C1354. DOI: 10.1152/ajpcell.00547.2002.
  65. Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999;147(6):1351–1363. DOI: 10.1083/jcb.147.6.1351.
  66. Cunningham KE, Turner JR. Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci 2012;1258(1):34–42. DOI: 10.1111/j.1749-6632.2012.06526.x.
  67. Wang F, Schwarz BT, Graham WV, et al. IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 2006;131(4):1153–1163. DOI: 10.1053/j.gastro.2006.08.022.
  68. Yang R, Han X, Uchiyama T, et al. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol 2003;285(3):G621–G629. DOI: 10.1152/ajpgi.00177.2003.
  69. Al-Sadi R, Guo S, Ye D, et al. TNF-alpha modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol 2013;183(6):1871–1874. DOI: 10.1016/j.ajpath.2013.09.001.
  70. Polak-Charcon S, Shoham J, Ben-Shaul Y. Tight junctions in epithelial cells of human fetal hindgut, normal colon, and colon adenocarcinoma. J Natl Cancer Inst 1980;65(1):53–62. PMID: 6930519.
  71. Van IC, Rahner C, Anderson JM. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 2001;107(10):1319–1327. DOI: 10.1172/JCI12464.
  72. Furuse M, Hata M, Furuse K, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002;156(6):1099–1111. DOI: 10.1083/jcb.200110122.
  73. Holmes JL, Van Itallie CM, Rasmussen JE, et al. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006;6(6):581–588. DOI: 10.1016/j.modgep.2005.12.001.
  74. Hogberg N, Stenback A, Carlsson PO, et al. Genes regulating tight junctions and cell adhesion are altered in early experimental necrotizing enterocolitis. J Pediatr Surg 2013;48(11):2308–2312. DOI: 10.1016/j.jpedsurg.2013.06.027.
  75. Patel RM, Myers LS, Kurundkar AR, et al. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 2012;180(2):626–635. DOI: 10.1016/j.ajpath.2011.10.025.
  76. Thuijls G, Derikx JP, van Wijck K, et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis. Ann Surg 2010;251(6):1174–1180. DOI: 10.097/SLA.0b013e3181d778c4.
  77. Prasad S, Mingrino R, Kaukinen K, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest 2005;85(9):1139–1162. DOI: 10.1038/labinvest.3700316.
  78. Weber CR, Nalle SC, Tretiakova M, et al. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest 2008;88(10):1110–1120. DOI: 10.1038/labinvest.2008.78.
  79. Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 2011;286(36):31263–31271. DOI: 10.1074/jbc.M111.238147.
  80. Tamura A, Hayashi H, Imasato M, et al. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 2011;140(3):913–923. DOI: 10.1053/j.gastro.2010.08.006.
  81. Li Q, Zhang Q, Wang C, et al. Disruption of tight junctions during polymicrobial sepsis in vivo. J Pathol 2009;218(2):210–221. DOI: 10.1002/path.2525.
  82. Shiou SR, Yu Y, Chen S, et al. Erythropoietin protects intestinal epithelial barrier function and lowers the incidence of experimental neonatal necrotizing enterocolitis. J Biol Chem 2011;286(14):12123–12132. DOI: 10.1074/jbc.M110.154625.
  83. Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 2011;192(6):907–917. DOI: 10.1083/jcb.201009141.
  84. Buonpane C, Yuan C, Wood D, et al. ROCK1 inhibitor stabilizes E-cadherin and improves barrier function in experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2020;318(4):G781–G792. DOI: 10.1152/ajpgi.00195.2019.
  85. Carlisle EM, Poroyko V, Caplan MS, et al. Murine gut microbiota and transcriptome are diet dependent. Ann Surg 2013;257(2):287–294. DOI: 10.1097/SLA.0b013e318262a6a6.
  86. He W, Ladinsky MS, Huey-Tubman KE, et al. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 2008;455(7212):542–546. DOI: 10.1038/nature07255.
  87. Barreau F, Hugot JP. Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol 2014;17:91–98. DOI: 10.1016/j.mib.2013.12.003.
  88. Panigrahi P, Bamford P, Horvath K, et al. Escherichia coli transcytosis in a Caco-2 cell model: implications in neonatal necrotizing enterocolitis. Pediatr Res 1996;40(3):415–421. DOI: 10.1203/00006450-199609000-00009.
  89. Troeger H, Richter JF, Beutin L, et al. Escherichia coli alpha-haemolysin induces focal leaks in colonic epithelium: a novel mechanism of bacterial translocation. Cell Microbiol 2007;9(10):2530–2540. DOI: 10.1111/j.1462-5822.2007.00978.x.
  90. Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011;141(5):769–776. DOI: 10.3945/jn.110.135657.
  91. Soderholm JD, Streutker C, Yang PC, et al. Increased epithelial uptake of protein antigens in the ileum of Crohn's disease mediated by tumour necrosis factor alpha. Gut 2004;53(12):1817–1824. DOI: 10.1136/gut.2004.041426.
  92. Leaphart CL, Qureshi F, Cetin S, et al. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology 2007;132(7):2395–2411. DOI: 10.1053/j.gastro.2007.03.029.
  93. Smyth D, Phan V, Wang A, et al. Interferon-gamma-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. Lab Invest 2011;91(5):764–777. DOI: 10.1038/labinvest.2010.208.
  94. Menard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 2010;3(3):247–259. DOI: 10.1038/mi.2010.5.
  95. Kucharzik T, Lugering N, Rautenberg K, et al. Role of M cells in intestinal barrier function. Ann N Y Acad Sci 2000;915:171–183. DOI: 10.1111/j.1749-6632.2000.tb05240.x.
  96. Kucharzik T, Walsh SV, Chen J, et al. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 2001;159(6):2001–2009. DOI: 10.1016/S0002-9440(10)63051-9.
  97. Ireland H, Houghton C, Howard L, et al. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev Dyn 2005;233(4):1332–1336. DOI: 10.1002/dvdy.20446.
  98. Bullen TF, Forrest S, Campbell F, et al. Characterization of epithelial cell shedding from human small intestine. Lab Invest 2006;86(10):1052–1063. DOI: 10.1038/labinvest.3700464.
  99. Wang L, Zeng X, Ryoo HD, et al. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet 2014;10(8):e1004568. DOI: 10.1371/journal.pgen. 1004568.
  100. Bojarski C, Gitter AH, Bendfeldt K, et al. Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis. J Physiol 2001;535:541–552. DOI: 10.1111/j.1469-7793.2001.00541.x.
  101. Chokshi NK, Guner YS, Hunter CJ, et al. The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis. Semin Perinatal 2008;32(2):92–99. DOI: 10.1053/j.semperi.2008.01.002.
  102. Jilling T, Simon D, Lu J, et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 2006;177(5):3273–3782. DOI: 10.4049/jimmunol.177.5.3273.
  103. Leaphart CL, Cavallo J, Gribar SC, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 2007;179(7):4808–4820. DOI: 10.4049/jimmunol.179.7.4808.
  104. Qureshi FG, Leaphart C, Cetin S, et al. Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution. Gastroenterology 2005;128(4):1012–1022. DOI: 10.1053/j.gastro.2005.01.052.
  105. Neal MD, Sodhi CP, Dyer M, et al. A critical role for TLR4 induction of autophagy in the regulation of enterocyte migration and the pathogenesis of necrotizing enterocolitis. J Immunol 2013;190(7):3541–3551. DOI: 10.4049/jimmunol.1202264.
  106. Neal MD, Sodhi CP, Jia H, et al. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem 2012;287(44):37296–37308. DOI: 10.1074/jbc.M112.375881.
  107. Sodhi CP, Shi XH, Richardson WM, et al. Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology 2010;138(1):185–196. DOI: 10.1053/j.gastro.2009.09.045.
  108. Richardson WM, Sodhi CP, Russo A, et al. Nucleotide-binding oligomerization domain-2 inhibits toll-like receptor-4 signaling in the intestinal epithelium. Gastroenterology 2010;139(3):904–917,17e1–e6. DOI: 10.1053/j.gastro.2010.05.038.
  109. Anand RJ, Dai S, Rippel C, et al. Activated macrophages inhibit enterocyte gap junctions via the release of nitric oxide. Am J Physiol Gastrointest Liver Physiol 2008;294(1):G109–G119. DOI: 10.1152/ajpgi.00331.2007.
  110. Cetin S, Leaphart CL, Li J, et al. Nitric oxide inhibits enterocyte migration through activation of RhoA-GTPase in a SHP-2-dependent manner. Am J Physiol Gastrointest Liver Physiol 2007;292(5):G1347–G1358. DOI: 10.1152/ajpgi.00375.2006.
  111. Weil BR, Markel TA, Herrmann JL, et al. Mesenchymal stem cells enhance the viability and proliferation of human fetal intestinal epithelial cells following hypoxic injury via paracrine mechanisms. Surgery 2009;146(2):190–197. DOI: 10.1016/j.surg.2009.03.031.
  112. Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001;2(4):361–367. DOI: 10.1038/86373.
  113. Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307(5707):254–258. DOI: 10.1126/science.1102901.
  114. Liu Y, Zhu L, Fatheree NY, et al. Changes in intestinal Toll-like receptors and cytokines precede histological injury in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2009;297(3):G442–G450. DOI: 10.1152/ajpgi.00182.2009.
  115. Maheshwari A, Schelonka RL, Dimmitt RA, et al. Cytokines associated with necrotizing enterocolitis in extremely-low-birth-weight infants. Pediatr Res 2014;76(1):48. DOI: 10.1038/pr.2014.48.
  116. Marchiando AM, Shen L, Graham WV, et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 2011;140(4):1208–1218e1–2. DOI: 10.1053/j.gastro.2011.01.004.
  117. Marchiando AM, Shen L, Graham WV, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 2010;189(1):111–126. DOI: 10.1083/jcb.200902153.
  118. Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 2007;178(7):4641–4649. DOI: 10.4049/jimmunol.178.7.4641.
  119. Al-Sadi R, Ye D, Said HM, et al. IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappa B pathway. Am J Pathol 2010;177(5):2310–2322. DOI: 10.53/ajpath.010.100371.
  120. Al-Sadi R, Ye D, Boivin M, et al. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 2014;9(3):e85345. DOI: 10.1371/journal.pone.0085345.
  121. Emami CN, Mittal R, Wang L, et al. Recruitment of dendritic cells is responsible for intestinal epithelial damage in the pathogenesis of necrotizing enterocolitis by Cronobacter sakazakii. J Immunol 2011;186(12):7067–7079. DOI: 10.4049/jimmunol.1100108.
  122. Schulzke JD, Ploeger S, Amasheh M, et al. Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 2009;1165:294–300. DOI: 10.1111/j.1749-6632.2009.04062.x.
  123. Wang F, Graham WV, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 2005;166(2):409–419. DOI: 10.1016/s0002-9440(10)62264-x.
  124. De Plaen IG, Liu SX, Tian R, et al. Inhibition of nuclear factor-kappaB ameliorates bowel injury and prolongs survival in a neonatal rat model of necrotizing enterocolitis. Pediatr Res 2007;61(6):716–721. DOI: 10.1203/pdr.0b013e3180534219.
  125. Pasparakis M. IKK/NF-kappaB signaling in intestinal epithelial cells controls immune homeostasis in the gut. Mucosal Immunol 2008;1 (Suppl 1): S54–S57. DOI: 10.1038/mi.2008.53.
  126. Managlia ELS, Yan XC, De Plaen IG. Blocking NF-κB activation in intestinal Lysozyme-M+ cells prevents the NEC-induced decrease in Ly6C+ cells in the neonatal intestine. FASEB 2016.
  127. Lin HC, Su BH, Chen AC, et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 2005;115(1):1–4. DOI: 10.1542/peds.2004-1463.
  128. Stratiki Z, Costalos C, Sevastiadou S, et al. The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev 2007;83(9):575–579. DOI: 10.1016/j.earlhumdev.2006.12.002.
  129. Ewaschuk JB, Diaz H, Meddings L, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008;295(5):G1025–G1034. DOI: 10.1152/ajpgi.90227.2008. Epub 2008 Sep 11.
  130. Khailova L, Mount Patrick SK, Arganbright KM, et al. Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2010;299(5):G1118–G1127. DOI: 10.1152/ajpgi.00131.2010.
  131. Weng M, Ganguli K, Zhu W, et al. Conditioned medium from Bifidobacteria infantis protects against Cronobacter sakazakii-induced intestinal inflammation in newborn mice. Am J Physiol Gastrointest Liver Physiol 2014;306(9):G779–G787. DOI: 10.1152/ajpgi.00183.2013.
  132. Rumbo M, Schiffrin EJ. Ontogeny of intestinal epithelium immune functions: developmental and environmental regulation. Cell Mol Life Sci CMLS 2005;62(12):1288–1296. DOI: 10.1007/s00018-005-5033-3.
  133. Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol 2008;34(2):191–204. DOI: 10.1007/s12016-007-8032-3.
  134. Ostergaard MV, Bering SB, Jensen ML, et al. Modulation of intestinal inflammation by minimal enteral nutrition with amniotic fluid in preterm pigs. JPEN J Parenter Enteral Nutr 2013;38(5):576–586. DOI: 10.1177/0148607113489313.
  135. Siggers J, Ostergaard MV, Siggers RH, et al. Postnatal amniotic fluid intake reduces gut inflammatory responses and necrotizing enterocolitis in preterm neonates. Am J Physiol Gastrointest Liver Physiol 2013;304(10):G864–G875. DOI: 10.1152/ajpgi.00278.2012.
  136. Jain SK, Baggerman EW, Mohankumar K, et al. Amniotic fluid-borne hepatocyte growth factor protects rat pups against experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2014;306(5):G361–G369. DOI: 10.1152/ajpgi.00272.2013.
  137. Zani A, Cananzi M, Fascetti-Leon F, et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 2014;63(2):300–309. DOI: 10.1136/gutjnl-2012-303735.
  138. Li B, Lee C, Chuslip S, et al. Intestinal epithelial tight junctions and permeability can be rescued through the regulation of endoplasmic reticulum stress by amniotic fluid stem cells during necrotizing enterocolitis. FASEB J 2021;35(1):e21265. DOI: 10.1096/fj.2020 01426R.
  139. Taylor SN, Basile LA, Ebeling M, et al. Intestinal permeability in preterm infants by feeding type: mother's milk versus formula. Breastfeeding Med 2009;4(1):11–15. DOI: 10.1089/bfm.2008.0114.
  140. Carvalho EB, Maga EA, Quetz JS, et al. Goat milk with and without increased concentrations of lysozyme improves repair of intestinal cell damage induced by enteroaggregative Escherichia coli. BMC Gastroenterol 2012;12:106. DOI: 10.1186/1471-230X-12-106.
  141. Gunasekaran A, Eckert J, Burge K, et al. Hyaluronan 35 kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis. Pediatr Res 2020;87(7):1177–1184. DOI: 10.1038/s41390-019-0563-9.
  142. Bein A, Lubetzky R, Mandel D, et al. TIMP-1 inhibition of occludin degradation in Caco-2 intestinal cells: a potential protective role in necrotizing enterocolitis. Pediatr Res 2015;77(5):649–655. DOI: 10.1038/pr.2015.26.
  143. He S, Liu G, Zhu X. Human breast milk-derived exosomes may help maintain intestinal epithelial barrier integrity. Pediatr Res 2021;90(2):366. DOI: 10.1038/s41390-021-01449-y.
  144. Sodhi CP, Wipf P, Yamaguchi Y, et al. Insights image for “The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling.” Pediatr Res 2021;89(1):248. DOI: 10.1038/s41390-020-01184-w.
  145. Peterson JA, Patton S, Hamosh M. Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Biol Neonate 1998;74(2):143–162. DOI: 10.1159/000014020.
  146. Holscher HD, Faust KL, Czerkies LA, et al. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. JPEN J Parenter Enteral Nutr 2012;36:95s–105s. DOI: 10.1177/0148607111430087.
  147. Fuhrer A, Sprenger N, Kurakevich E, et al. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. The Journal of experimental medicine 2010;207(13):2843–2854. DOI: 10.1084/jem.20101098.
  148. Liedel JL, Guo Y, Yu Y, et al. Mother's milk-induced Hsp70 expression preserves intestinal epithelial barrier function in an immature rat pup model. Pediatr Res 2011;69:395–400. DOI: 10.1203/PDR.0b013e3182114ec9.
  149. Koldovský O. Is breast-milk epidermal growth factor biologically active in the suckling? Nutrition 1989;5(4):223–225. PMID: 2520295.
  150. Dvorak B, Halpern MD, Holubec H, et al. Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model. Am J Physiol Gastrointest Liver Physiol 2002;2
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.