Intestinal Resection is More Likely to be Effective in Necrotizing Enterocolitis Extending to Colon than in Disease Limited to the Small Intestine
Parvesh M Garg, Jaslyn L Paschal, Katherine Lett, Charles Middleton, Neha Varshney
Citation Information :
Garg PM, Paschal JL, Lett K, Middleton C, Varshney N. Intestinal Resection is More Likely to be Effective in Necrotizing Enterocolitis Extending to Colon than in Disease Limited to the Small Intestine. 2022; 1 (1):14-26.
Background: The prognosis in surgical necrotizing enterocolitis (NEC) has focused on the total length of the resected bowel; the relative impact of small intestinal vs colonic resection is not well studied.
Objective: We hypothesized that intestinal resections may reduce mortality and length of hospital stay (LOS) more likely in infants who have NEC extending into the colon than in those with disease limited to the small intestine. We also investigated the relationship between gestational maturation and NEC-related mortality.
Methods: A retrospective study of 153 patients compared demographic, clinical, and histopathological information in infants who had NEC limited to the small intestine vs disease with colonic involvement.
Results: Our 153 infants had a mean (±standard deviation) gestational age of 27.4 ± 3.4 weeks and a birth weight of 987 ± 505 g. NEC was limited to the small intestine in 103 (67.3%) infants and extended into the colon in 50 (32.7%). Infants with small intestinal NEC needed shorter bowel resections of 28 ± 31.9 cm than 42.2 ± 40.7 cm in those with colonic involvement (p = 0.02). The LOS was longer in NEC limited to the small intestine than in disease with colonic lesions (96 ± 88.1 vs 69.7 ± 19.1 days; p <0.05). In small intestinal NEC, mortality decreased to <50% beyond a gestational age (GA) >37 weeks. In contrast, infants with NEC that involved the colon had mortality <50% mortality beyond 27.3 weeks’ GA (p = 0.008).
Conclusions: Bowel resections may be more likely associated with shorter LOS in surgical NEC that involves both the small bowel and colon, even when longer segments of the gastrointestinal tract are removed, than in disease limited to the small intestine.
Patel RM, Kandefer S, Walsh MC, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med 2015;372(4):331–340. DOI: 10.1056/NEJMoa1403489.
Neu J, Modi N, Caplan M. Necrotizing enterocolitis comes in different forms: Historical perspectives and defining the disease. Semin Fetal Neonatal Med 2018;23(6):370–373. DOI: 10.1016/j.siny.2018.07.004.
Jones IH, Hall NJ. Contemporary outcomes for infants with necrotizing enterocolitis: a systematic review. J Pediatr 2020;220:86–92.e3. DOI: 10.1016/j.jpeds.2019.11.011.
Han SM, Hong CR, Knell J, et al. Trends in incidence and outcomes of necrotizing enterocolitis over the last 12 years: a multicenter cohort analysis. J Pediatr Surg 2020;55(6):998–1001. DOI: 10.1016/j.jpedsurg.2020.02.046.
Garg PM, Hitt MM, Blackshear C, et al. Clinical determinants of postoperative outcomes in neonates with surgical necrotizing enterocolitis. J Perinatol 2020;40(11):1671–1678 [in review]. DOI: 10.1038/s41372-020-0728-8.
Hull MA, Fisher JG, Gutierrez IM, et al. Mortality and management of surgical necrotizing enterocolitis in very low birth weight neonates: a prospective cohort study. J Am Coll Surg 2014;218(6):1148–1155. DOI: 10.1016/j.jamcollsurg.2013.11.015.
Remon JI, Amin SC, Mehendale SR, et al. Depth of bacterial invasion in resected intestinal tissue predicts mortality in surgical necrotizing enterocolitis. J Perinatol 2015;35(9):755–762. DOI: 10.1038/jp.2015.51.
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. Journal of the American Medical Association 2015;314(10):1039–1051. DOI: 10.1001/jama.2015.10244.
Nair R, Kahlenberg CA, Patel RM, et al. All-arthroscopic suprapectoral biceps tenodesis. Arthrosc Tech 2015;4(6):e855–e861. DOI: 10.1016/j.eats.2015.08.010.
Santulli TV, Schullinger JN, Heird WC, et al. Acute necrotizing enterocolitis in infancy: a review of 64 cases. Pediatrics 1975;55(3): 376–387. PMID: 1143976.
Sjoberg Bexelius T, Ahle M, Elfvin A, et al. Intestinal failure after necrotising enterocolitis: incidence and risk factors in a Swedish population-based longitudinal study. BMJ Paediatr Open 2018;2:e000316. DOI: 10.1136/bmjpo-2018-000316.
Allin BSR, Long AM, Gupta A, et al. One-year outcomes following surgery for necrotising enterocolitis: a UK-wide cohort study. Arch Dis Child Fetal Neonatal Ed 2018;103:F461–F466. DOI: 10.1136/archdischild-2017-313113.
Knell J, Han SM, Jaksic T, et al. Current status of necrotizing enterocolitis. Curr Probl Surg 2019;56(1):11–38. DOI: 10.1067/j.cpsurg.2018.11.005.
Spencer AU, Neaga A, West B, et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg 2005;242(3):403–409; discussion 409–412. DOI: 10.1097/01.sla.0000179647.24046.03.
Goulet O, Baglin-Gobet S, Talbotec C, et al. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg 2005;15(2):95–101. DOI: 10.1055/s-2004-821214.
Quiros-Tejeira RE, Ament ME, Reyen L, et al. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr 2004;145(2):157–163. DOI: 10.1016/j.jpeds.2004.02.030.
Garg PM, Bernieh A, Hitt MM, et al. Incomplete resection of necrotic bowel may increase mortality in infants with necrotizing enterocolitis. Pediatr Res 2021;89(1):163–170. DOI: 10.1038/s41390-020-0975-6.
Amin SC, Pappas C, Iyengar H, et al. Short bowel syndrome in the NICU. Clin Perinatol 2013;40(1):53–68. DOI: 10.1016/j.clp.2012.12.003.
Davies HT. Describing and estimating: use and abuse of standard deviations and standard errors. Hosp Med 1998;59(4):327–328. PMID: 9722376.
Machin D, Cheung YB, Parmar M. Survival analysis: a practical approach. Wiley; 2006. p. 278.
Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 2010;1(4):274–278. DOI: 10.4103/0974-7788.76794.
Chin AM, Hill DR, Aurora M, et al. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017;66:81–93. DOI: 10.1016/j.semcdb.2017.01.011.
Montgomery RK, Mulberg AE, Grand RJ. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 1999;116(3):702–731. DOI: 10.1016/s0016-5085(99)70193-9.
Lambert DK, Christensen RD, Henry E, et al. Necrotizing enterocolitis in term neonates: data from a multihospital health-care system. J Perinatol 2007;27(7):437–443. DOI: 10.1038/sj.jp.7211738.
Cuna A, George L, Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: current knowledge, challenges, and future directions. Semin Fetal Neonatal Med 2018;23(6):387–393. DOI: 10.1016/j.siny.2018.08.006.
Ho TBT, Groer MW, Kane B, et al. Dichotomous development of the gut microbiome in preterm infants. Microbiome 2018;6(1):157. DOI: 10.1186/s40168-018-0547-8.
Ho TBT, Groer MW, Kane B, et al. Enteric dysbiosis and fecal calprotectin expression in premature infants. Pediatr Res 2019;85(3):361–368. DOI: 10.1038/s41390-018-0254-y.
Fundora JB, Guha P, Shores DR, et al. Intestinal dysbiosis and necrotizing enterocolitis: assessment for causality using Bradford Hill criteria. Pediatr Res 2020;87(2):235–248. DOI: 10.1038/s41390-019-0482-9.
MohanKumar K, Namachivayam K, Cheng F, et al. Trinitrobenzene sulfonic acid-induced intestinal injury in neonatal mice activates transcriptional networks similar to those seen in human necrotizing enterocolitis. Pediatr Res 2016;81(1):99–112. DOI: 10.1038/pr.2016.189.
MohanKumar K, Kaza N, Jagadeeswaran R, et al. Gut mucosal injury in neonates is marked by macrophage infiltration in contrast to pleomorphic infiltrates in adult: evidence from an animal model. Am J Physiol Gastrointest Liver Physiol 2012;303(1):G93–G102. DOI: 10.1152/ajpgi.00016.2012.
Zhang C, Sherman MP, Prince LS, et al. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 2012;5(4):522–532. DOI: 10.1242/dmm.009001.
MohanKumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun 2019;10(1):1–17. DOI: 10.1038/s41467-019-11199-5.
Jammeh ML, Adibe OO, Tracy ET, et al. Racial/ethnic differences in necrotizing enterocolitis incidence and outcomes in premature very low birth weight infants. J Perinatol 2018;38(10):1386–1390. DOI: 10.1038/s41372-018-0184-x.
Horbar JD, Badger GJ, Carpenter JH, et al. Trends in mortality and morbidity for very low birth weight infants, 1991–1999. Pediatrics 2002;110:143–151. DOI: 10.1542/peds.110.1.143.
Janevic T, Zeitlin J, Auger N, et al. Association of race/ethnicity with very preterm neonatal morbidities. JAMA Pediatr 2018;172(11):1061–1069. DOI: 10.1001/jamapediatrics.2018.2029.
Andrews WW, Goldenberg RL, Faye-Petersen O, et al. The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol 2006;195(3):803–808. DOI: 10.1016/j.ajog.2006.06.083.
Dorling J, Kempley S, Leaf A. Feeding growth restricted preterm infants with abnormal antenatal Doppler results. Arch Dis Child Fetal Neonatal Ed 2005;90(5):F359–F363. DOI: 10.1136/adc.2004.060350.
Venkatesh KK, Jackson W, Hughes BL, et al. Association of chorioamnionitis and its duration with neonatal morbidity and mortality. J Perinatol 2019;39(5):673–682. DOI: 10.1038/s41372-019-0322-0.
Peterslund P, Rasmussen L, Qvist N, et al. Frequencies of immune cells in the human small bowel during normal gestation and in necrotizing enterocolitis. Fetal Pediatr Pathol 2019;38(2):153–166. DOI: 10.1080/15513815.2018.1561774.